The unknown or unobservable risk factors in the survival analysis cause heterogeneity between individuals. Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times, the shared frailty models were suggested. The most common shared frailty model is a model in which frailty act multiplicatively on the hazard function. In this paper, we introduce the shared inverse Gaussian frailty model with the reversed hazard rate and the generalized inverted exponential distribution and the generalized exponential distribution as baseline distributions. We introduce the Bayesian estimation procedure using Markov Chain Monte Carlo(MCMC) technique to estimate the parameters involved in the models. We present a simulation study to compare the true values of the parameters with the estimated values. Also we apply the proposed models to the Australian twin data set and a better model is suggested.
Abstract: The present article discusses and compares multiple testing procedures (MTPs) for controlling the family wise error rate. Machekano and Hubbard (2006) have proposed empirical Bayes approach that is a resampling based multiple testing procedure asymptotically controlling the familywise error rate. In this paper we provide some additional work on their procedure, and we develop resampling based step-down procedure asymptotically controlling the familywise error rate for testing the families of one-sided hypotheses. We apply these procedures for making successive comparisons between the treatment effects under a simple-order assumption. For example, the treatment means may be a sequences of increasing dose levels of a drug. Using simulations, we demonstrate that the proposed step-down procedure is less conservative than the Machekano and Hubbard’s procedure. The application of the procedure is illustrated with an example.
Abstract: The detection of slope change points in wind curves depends on linear curve-fitting. Hall and Titterington’s algorithm based on smoothing is adapted and compared to a Bayesian method of curve-fitting. After prior spline smoothing of the data, the algorithms are tested and the errors between the split-linear fitted wind and the real one are estimated. In our case, the adaptation of the edge-preserving smoothing algorithm gives the same good performance as automatic Bayesian curve-fitting based on a Monte Carlo Markov chain algorithm yet saves computation time.
Survival analysis is the widely used statistical tool for new intervention comparison in presence of hazards of follow up studies. However, it is difficult to obtain suitable survival rate in presence of high level of hazard within few days of surgery. The group of patients can be directly stratified into cured and non-cured strata. The mixture models are natural choice for estimation of cure and non-cure rate estimation. The estimation of cure rate is an important parameter of success of any new intervention. The cure rate model is illustrated to compare the surgery of liver cirrhosis patients with consenting for participation HFLPC (Human Fatal Liver Progenitor Cells) Infusion vs. consenting for participation alone group in South Indian popula-tion. The surgery is best available technique for liver cirrhosis treatment. The success of the surgery is observed through follow up study. In this study, MELD (Model for End-Stage Liver Disease) score is considered as response of interest for cured and non-cured group. The primary efficacy of surgery is considered as covariates of interest. Distributional assumptions of the cure rate are solved with Markov Chain Monte Carlo (MCMC) techniques. It is found that cured model with parametric approach allows more consistent estimates in comparison to standard procedures. The risk of death due to liver transplantation in liver cirrhosis patients including time dependent effect terms has also been explored. The approach assists to model with different age and sex in both the treatment groups.
Pub. online:4 Aug 2022Type:Research ArticleOpen Access
Journal:Journal of Data Science
Volume 18, Issue 3 (2020): Special issue: Data Science in Action in Response to the Outbreak of COVID-19, pp. 409–432
Abstract
We develop a health informatics toolbox that enables timely analysis and evaluation of the timecourse dynamics of a range of infectious disease epidemics. As a case study, we examine the novel coronavirus (COVID-19) epidemic using the publicly available data from the China CDC. This toolbox is built upon a hierarchical epidemiological model in which two observed time series of daily proportions of infected and removed cases are generated from the underlying infection dynamics governed by a Markov Susceptible-Infectious-Removed (SIR) infectious disease process. We extend the SIR model to incorporate various types of time-varying quarantine protocols, including government-level ‘macro’ isolation policies and community-level ‘micro’ social distancing (e.g. self-isolation and self-quarantine) measures. We develop a calibration procedure for underreported infected cases. This toolbox provides forecasts, in both online and offline forms, as well as simulating the overall dynamics of the epidemic. An R software package is made available for the public, and examples on the use of this software are illustrated. Some possible extensions of our novel epidemiological models are discussed.
Compositional data consist of known compositions vectors whose components are positive and defined in the interval (0,1) representing proportions or fractions of a “whole”. The sum of these components must be equal to one. Compositional data is present in different knowledge areas, as in geology, economy, medicine among many others. In this paper, we propose a new statistical tool for volleyball data, i.e., we introduce a Bayesian anal- ysis for compositional regression applying additive log-ratio (ALR) trans- formation and assuming uncorrelated and correlated errors. The Bayesian inference procedure based on Markov Chain Monte Carlo Methods (MCMC). The methodology is applied on an artificial and a real data set of volleyball.
The surrogate markers(SM) are the important factor for angiogenesis in cancer patients.In Metronomic Chemotherapy (MC) , physicians administer subtoxic doses of chemotherapy (without break) for long periods, to the target tumor angiogenesis. We propose a semiparametric approach, predictive risk modeling and time to control the level of surrogate marker to detect the perfect dose level of MC. It is based on the controlled level of surrogate marker, and the aim is to detect an Optimum Biological Dose (OBD) finding rather than a traditional Maximum Tolerated Dose (MTD) approach. The methods are illustrated with MC trial dataset to determine the best OBD and we investigate the performance of the model through simulation studies.