The ultrasonic testing has been considered a promising method for diagnosing and characterizing masonry walls. As ultrasonic waves tend to travel faster in denser materials, their use is common in evaluating the conditions of various materials. Presence of internal voids, e.g., would alter the wave path, and this distinct behavior could be employed to identify unknown conditions within the material, allowing for the assessment of its condition. Therefore, we applied mixed models and Gaussian processes to analyze the behavior of ultrasonic waves on masonry walls and identify relevant factors impacting their propagation. We observed that the average propagation time behavior differs depending on the material for both models. Additionally, the condition of the wall influences the propagation time. Gaussian process and mixed model performances are compared, and we conclude that these models can be useful in a classification model to automatically identify anomalies within masonry walls.
Attention mechanism has become an almost ubiquitous model architecture in deep learning. One of its distinctive features is to compute non-negative probabilistic distribution to re-weight input representations. This work reconsiders attention weights as bidirectional coefficients instead of probabilistic measures for potential benefits in interpretability and representational capacity. After analyzing the iteration process of attention scores through backwards gradient propagation, we proposed a novel activation function, TanhMax, which possesses several favorable properties to satisfy the requirements of bidirectional attention. We conduct a battery of experiments to validate our analyses and advantages of proposed method on both text and image datasets. The results show that bidirectional attention is effective in revealing input unit’s semantics, presenting more interpretable explanations and increasing the expressive power of attention-based model.
Analyzing the gene-environment interaction (GEI) is crucial for understanding the etiology of many complex traits. Among various types of study designs, case-control studies are popular for analyzing gene-environment interactions due to their efficiency in collecting covariate information. Extensive literature explores efficient estimation under various assumptions made about the relationship between genetic and environmental variables. In this paper, we comprehensively review the methods based on or related to the retrospective likelihood, including the methods based on the hypothetical population concept, which has been largely overlooked in GEI research in the past decade. Furthermore, we establish the methodological connection between these two groups of methods by deriving a new estimator from both the retrospective likelihood and the hypothetical population perspectives. The validity of the derivation is demonstrated through numerical studies.
Imbalanced datasets present a significant challenge for machine learning models, often leading to biased predictions. To address this issue, data augmentation techniques are widely used to generate new samples for the minority class. However, in this paper, we challenge the common assumption that data augmentation is necessary to improve predictions on imbalanced datasets. Instead, we argue that adjusting the classifier cutoffs without data augmentation can produce similar results to oversampling techniques. Our study provides theoretical and empirical evidence to support this claim. Our findings contribute to a better understanding of the strengths and limitations of different approaches to dealing with imbalanced data, and help researchers and practitioners make informed decisions about which methods to use for a given task.
The assignment problem, crucial in various real-world applications, involves optimizing the allocation of agents to tasks for maximum utility. While it has been well-studied in the optimization literature when the underlying utilities between all agent-task pairs are known, research is sparse when the utilities are unknown and need to be learned from data on the fly. This paper addresses this gap, as motivated by mentor-mentee matching programs at many U.S. universities. We develop an efficient sequential assignment algorithm, with the aim of nearly maximizing the overall utility simultaneously over different time periods. Our proposed algorithm is to use stochastic bandit feedback to adaptively estimate the unknown utilities through linear regression models, integrating the Upper Confidence Bound (UCB) algorithm in the multi-armed bandit problem with the Hungarian algorithm in the assignment problem. We provide theoretical bounds of our algorithm for both the estimation error and the total regret. Additionally, numerical studies are also conducted to demonstrate the practical effectiveness of our algorithm.
Society’s capacity for algorithmic problem-solving has never been greater. Artificial Intelligence is now applied across more domains than ever, a consequence of powerful abstractions, abundant data, and accessible software. As capabilities have expanded, so have risks, with models often deployed without fully understanding their potential impacts. Interpretable and interactive machine learning aims to make complex models more transparent and controllable, enhancing user agency. This review synthesizes key principles from the growing literature in this field. We first introduce precise vocabulary for discussing interpretability, like the distinction between glass box and explainable models. We then explore connections to classical statistical and design principles, like parsimony and the gulfs of interaction. Basic explainability techniques – including learned embeddings, integrated gradients, and concept bottlenecks – are illustrated with a simple case study. We also review criteria for objectively evaluating interpretability approaches. Throughout, we underscore the importance of considering audience goals when designing interactive data-driven systems. Finally, we outline open challenges and discuss the potential role of data science in addressing them. Code to reproduce all examples can be found at https://go.wisc.edu/3k1ewe.
Multivariate random forests (or MVRFs) are an extension of tree-based ensembles to examine multivariate responses. MVRF can be particularly helpful where some of the responses exhibit sparse (e.g., zero-inflated) distributions, making borrowing strength from correlated features attractive. Tree-based algorithms select features using variable importance measures (VIMs) that score each covariate based on the strength of dependence of the model on that variable. In this paper, we develop and propose new VIMs for MVRFs. Specifically, we focus on the variable’s ability to achieve split improvement, i.e., the difference in the responses between the left and right nodes obtained after splitting the parent node, for a multivariate response. Our proposed VIMs are an improvement over the default naïve VIM in existing software and allow us to investigate the strength of dependence both globally and on a per-response basis. Our simulation studies show that our proposed VIM recovers the true predictors better than naïve measures. We demonstrate usage of the VIMs for variable selection in two empirical applications; the first is on Amazon Marketplace data to predict Buy Box prices of multiple brands in a category, and the second is on ecology data to predict co-occurrence of multiple, rare bird species. A feature of both data sets is that some outcomes are sparse — exhibiting a substantial proportion of zeros or fixed values. In both cases, the proposed VIMs when used for variable screening give superior predictive accuracy over naïve measures.
Changepoint analysis has had a striking variety of applications, and a rich methodology has been developed. Our contribution here is a new approach that uses nonlinear regression analysis as an intermediate computational device. The tool is quite versatile, covering a number of different changepoint scenarios. It is largely free of parametric model assumptions, and has the major advantage of providing standard errors for formal statistical inference. Both abrupt and gradual changes are covered.
There is growing interest in accommodating network structure in panel data models. We consider dynamic network Poisson autoregressive (DN-PAR) models for panel count data, enabling their use in regard to a time-varying network structure. We develop a Bayesian Markov chain Monte Carlo technique for estimating the DN-PAR model, and conduct Monte Carlo experiments to examine the properties of the posterior quantities and compare dynamic and constant network models. The Monte Carlo results indicate that the bias in the DN-PAR models is negligible, while the constant network model suffers from bias when the true network is dynamic. We also suggest an approach for extracting the time-varying network from the data. The empirical results for the count data for confirmed cases of COVID-19 in the United States indicate that the extracted dynamic network models outperform the constant network models in regard to the deviance information criterion and out-of-sample forecasting.
Classification is an important statistical tool that has increased its importance since the emergence of the data science revolution. However, a training data set that does not capture all underlying population subgroups (or clusters) will result in biased estimates or misclassification. In this paper, we introduce a statistical and computational solution to a possible bias in classification when implemented on estimated population clusters. An unseen-cluster problem denotes the case in which the training data does not contain all underlying clusters in the population. Such a scenario may occur due to various reasons, such as sampling errors, selection bias, or emerging and disappearing population clusters. Once an unseen-cluster problem occurs, a testing observation will be misclassified because a classification rule based on the sample cannot capture a cluster not observed in the training data (sample). To overcome such issues, we suggest a two-stage classification method to ameliorate the unseen-cluster problem in classification. We suggest a test to identify the unseen-cluster problem and demonstrate the performance of the two-stage tailored classifier using simulations and a public data example.