Journal of Data Science logo


Login Register

  1. Home
  2. Issues
  3. Volume 13, Issue 3 (2015)
  4. The Cure Rate Modeling: An Application w ...

Journal of Data Science

Submit your article Information
  • Article info
  • Related articles
  • More
    Article info Related articles

The Cure Rate Modeling: An Application with Bayesian approach in Liver Cirrhosis Patients
Volume 13, Issue 3 (2015), pp. 421–442
Dilip C Nath   Atanu Bhattacharjee   Ramesh K Vishwakarma  

Authors

 
Placeholder
https://doi.org/10.6339/JDS.201507_13(3).0001
Pub. online: 4 August 2022      Type: Research Article      Open accessOpen Access

Published
4 August 2022

Abstract

Survival analysis is the widely used statistical tool for new intervention comparison in presence of hazards of follow up studies. However, it is difficult to obtain suitable survival rate in presence of high level of hazard within few days of surgery. The group of patients can be directly stratified into cured and non-cured strata. The mixture models are natural choice for estimation of cure and non-cure rate estimation. The estimation of cure rate is an important parameter of success of any new intervention. The cure rate model is illustrated to compare the surgery of liver cirrhosis patients with consenting for participation HFLPC (Human Fatal Liver Progenitor Cells) Infusion vs. consenting for participation alone group in South Indian popula-tion. The surgery is best available technique for liver cirrhosis treatment. The success of the surgery is observed through follow up study. In this study, MELD (Model for End-Stage Liver Disease) score is considered as response of interest for cured and non-cured group. The primary efficacy of surgery is considered as covariates of interest. Distributional assumptions of the cure rate are solved with Markov Chain Monte Carlo (MCMC) techniques. It is found that cured model with parametric approach allows more consistent estimates in comparison to standard procedures. The risk of death due to liver transplantation in liver cirrhosis patients including time dependent effect terms has also been explored. The approach assists to model with different age and sex in both the treatment groups.

Related articles PDF XML
Related articles PDF XML

Copyright
No copyright data available.

Keywords
MCMC MELD score Survival analysis Posterior estimation

Metrics
since February 2021
718

Article info
views

404

PDF
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

Journal of data science

  • Online ISSN: 1683-8602
  • Print ISSN: 1680-743X

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • JDS@ruc.edu.cn
  • No. 59 Zhongguancun Street, Haidian District Beijing, 100872, P.R. China
Powered by PubliMill  •  Privacy policy