Linear regression models are widely used in empirical studies. When serial correlation is present in the residuals, generalized least squares (GLS) estimation is commonly used to improve estimation efficiency. This paper proposes the use of an alternative estimator, the approximate generalized least squares estimators based on high-order AR(p) processes (GLS-AR). We show that GLS-AR estimators are asymptotically efficient as GLS estimators, as both the number of AR lag, p, and the number of observations, n, increase together so that $p=o({n^{1/4}})$ in the limit. The proposed GLS-AR estimators do not require the identification of the residual serial autocorrelation structure and perform more robust in finite samples than the conventional FGLS-based tests. Finally, we illustrate the usefulness of GLS-AR method by applying it to the global warming data from 1850–2012.
Families of distributions are commonly used to model insurance claims data that require flexible distributional forms in a satisfactory manner, but the specification problem to assess the goodness-of-fit of the hypothesized model can sometimes be a challenge due to the complexity of the likelihood function of the family of distributions involved. The previous work shows that these specification problems can be attacked by means of semi-parametric tests based on generalized method of moment (GMM) estimators. While the approach can be directly applied to both discrete and continuous families of distributions, the paper focuses on developing a testing strategy within a framework of discrete families of distributions. Both the local power analysis and the approximate slope method demonstrate the excellent performance of these tests. The finite-sample performance of the tests, based on both asymptotic and bootstrap critical values, are also discussed and are compared with established methods that require the complete specification of likelihood functions.