Journal of Data Science logo


Login Register

  1. Home
  2. Issues
  3. Volume 22, Issue 4 (2024)
  4. Revisiting the Use of Generalized Least ...

Journal of Data Science

Submit your article Information
  • Article info
  • Related articles
  • More
    Article info Related articles

Revisiting the Use of Generalized Least Squares in Time Series Regression Models
Volume 22, Issue 4 (2024), pp. 486–504
Yue Fang   Sergio G. Koreisha   Qi-man Shao  

Authors

 
Placeholder
https://doi.org/10.6339/23-JDS1108
Pub. online: 21 July 2023      Type: Statistical Data Science      Open accessOpen Access

Received
3 January 2023
Accepted
10 June 2023
Published
21 July 2023

Abstract

Linear regression models are widely used in empirical studies. When serial correlation is present in the residuals, generalized least squares (GLS) estimation is commonly used to improve estimation efficiency. This paper proposes the use of an alternative estimator, the approximate generalized least squares estimators based on high-order AR(p) processes (GLS-AR). We show that GLS-AR estimators are asymptotically efficient as GLS estimators, as both the number of AR lag, p, and the number of observations, n, increase together so that $p=o({n^{1/4}})$ in the limit. The proposed GLS-AR estimators do not require the identification of the residual serial autocorrelation structure and perform more robust in finite samples than the conventional FGLS-based tests. Finally, we illustrate the usefulness of GLS-AR method by applying it to the global warming data from 1850–2012.

Supplementary material

 Supplementary Material
Online Supplements.

References

 
Amemiya T (1973). Generalized least squares with an estimated autocovariance matrix. Econometrica, 41: 723–732. https://doi.org/10.2307/1914092
 
Berk KN (1974). Consistent autoregressive spectral estimates. The Annals of Statistics, 2: 489–502.
 
Bhansali RJ (1986). The criterion autoregressive transfer function of Parzen. Journal of Time Series Analysis, 7: 79–103. https://doi.org/10.1111/j.1467-9892.1986.tb00487.x
 
Bhansali RJ, Papangeloup F (1991). Convergence of moments of least squares estimators for the coefficients of an autoregressive process of unknown order. The Annals of Statistics, 19: 1155–1162.
 
Bloomfield P, Nychka D (1992). Climate spectra and detecting climate change. Climate Change, 21: 275–287. https://doi.org/10.1007/BF00139727
 
Breusch T (1980). Useful invariance results for generalized regression models. Journal of Econometrics, 13: 327–340. https://doi.org/10.1016/0304-4076(80)90083-4
 
Chambers M (2013). Jackknife estimation of stationary autoregressive models. Journal of Econometrics, 172: 142–157. https://doi.org/10.1016/j.jeconom.2012.09.003
 
Chambers M, Ercolane JS, Taylor AMR (2014). Testing for seasonal unit roots by frequency domain regression. Journal of Econometrics, 178: 243–258. https://doi.org/10.1016/j.jeconom.2013.08.025
 
Choi I, Kurozumi E (2012). Model selection criteria for the leads-and-lags cointegrating regression. Journal of Econometrics, 169: 224–238. https://doi.org/10.1016/j.jeconom.2012.01.021
 
Choudhury A, Hubata R, Louis R (1999). Understanding time-series regression estimators. American Statistician, 53: 342–348.
 
Cochrane D, Orcutt GH (1949). Application of least squares regression to relationships containing auto-correlated error terms. Journal of the American Statistical Association, 44: 32–61. https://doi.org/10.1080/01621459.1949.10483312
 
Davidson R, Mackinnon JG (1993). Estimation and Inference in Econometrics. Oxford University Press, Oxford, UK.
 
Engle R (1974). Specification of the disturbance for efficient estimation. Econometrica, 42: 135–146. https://doi.org/10.2307/1913690
 
Fomby TB, Vogelsang TJ (2002). The application of size-robust trend statistics to global-warming temperature series. Journal of Climate, 15: 117–123.
 
Fuller WA (1996). Introduction to Statistical Time Series. John Wiley & Sons, Inc., New York, NY.
 
Goldberger AS (1962). Best linear unbiased prediction in the generalized linear regression model. Journal of the American Statistical Association, 57: 369–375. https://doi.org/10.1080/01621459.1962.10480665
 
Hannan EJ, Rissanen J (1982). Recursive estimation of mixed autoregressive-moving average order. Biometrika, 69: 81–94. https://doi.org/10.1093/biomet/69.1.81
 
Harvey DI, Leybourne SJ, Taylor AMR (2010). Robust methods for detecting multiple level breaks in autocorrelated time series. Journal of Econometrics, 157: 342–358. https://doi.org/10.1016/j.jeconom.2010.02.003
 
Jones WTML, D P, Wright PB (1986). Global temperature variations between 1861 and 1984. Nature, 332: 430–434. https://doi.org/10.1038/322430a0
 
Judge GG, Griffiths WE, Hill RC, Lütkepohl H, Lee T (1985). The Theory and Practice of Econometrics. John Wiley & Sons, New York, NY.
 
Kadiyala K (1970). Testing for the independence of regression disturbances. Econometrica, 38: 97–117. https://doi.org/10.2307/1909244
 
Kennedy P (1988). A Guide to Econometrics. The MIT Press, Cambridge, MA.
 
Kiefer N, Vogelsang T, Bunzel H (2000). Simple robust testing of regression hypotheses. Econometrica, 68: 695–714. https://doi.org/10.1111/1468-0262.00128
 
Kiefer N, Vogelsang TJ (2005). A new asymptotic theory for heteroscedasticity-autocorrelation robust tests. Econometric Theory, 21: 1130–1164. https://doi.org/10.1017/S0266466605050565
 
Kiefer NM, Vogelsang TJ (2002). Heteroscedasticity-autocorrelation robust standard errors using the Bartlett kernel without truncation. Econometrica, 70: 2093–2095. https://doi.org/10.1111/1468-0262.00366
 
King M (1983). Testing for autoregressive against moving average errors in the linear regression model. Journal of Econometrics, 21: 35–51. https://doi.org/10.1016/0304-4076(83)90118-5
 
Koreisha S, Fang Y (2001). Generalized least squares with misspecified serial correlation structures. Journal of the Royal Statistical Society, Series B, 63: 515–531. https://doi.org/10.1111/1467-9868.00296
 
Koreisha S, Pukkila T (1985). Properties of predictors in misspecified autoregressive time series model. Journal of the American Statistical Association, 80: 941–950. https://doi.org/10.1080/01621459.1985.10478208
 
Kunitomo N, Yamamoto T (1985). Properties of predictors in misspecified autoregressive time series model. Journal of the American Statistical Association, 80: 941–950. https://doi.org/10.1080/01621459.1985.10478208
 
Lee J, Lund R (2004). Revisiting simple linear regression with autocorrelated errors. Biometrika, 91: 240–245. https://doi.org/10.1093/biomet/91.1.240
 
Maddala GS (2001). Introduction to Econometrics. John Wiley & Sons, New York, NY.
 
Mittelhammer R, Judge G, Miller D (2000). Econometric Foundations. Cambridge University Press, Cambridge, MA.
 
Newey W, West K (1987). A simple positive semi-definite, heteroskedastic and autocorrelation consistent covariance matrix. Econometrica, 55: 703–708. https://doi.org/10.2307/1913610
 
Phillips PCB (2007). Regression with slowly varying regressors and nonlinear trends. Econometric Theory, 23: 557–614. https://doi.org/10.1017/S0266466607070491
 
Politis DN (2011). Higher-order accurate, positive semi-definite estimation of large-sample covariance and spectral density matrices. Econometric Theory, 27: 703–744. https://doi.org/10.1017/S0266466610000484
 
Prais SJ, Winsten CB (1954). Trend estimators and serial correlation. Chicago. Cowles Commission Discussion Paper, No. 383.
 
Pukkila T, Koreisha S, Kallinen A (1990). The identification of ARMA models. Biometrika, 77: 537–549. https://doi.org/10.1093/biomet/77.3.537
 
Saikkonen P (1991). Asymptotically efficient estimation of cointegration regressions. Econometric Theory, 7: 21.
 
Stock J, Watson M (2003). Introduction to Econometrics. Addison Wesley, Boston, MA.
 
Sun Y, Philips PCB, Jin S (2011). Power maximization and size control in heteroscedasticity and autocorrelation robust tests with exponentiated kernels. Econometric Theory, 27: 1320–1368. https://doi.org/10.1017/S0266466611000077
 
Thursby J (1987). OLS or GLS in the presence of specification error? Journal of Econometrics, 35: 359–374. https://doi.org/10.1016/0304-4076(87)90033-9
 
Walker A (1967). Some tests of separate families of hypotheses in time series analysis. Biometrika, 54: 39–68.
 
Wu WB, Woodroofe M, Mentz G (2001). Isotonic regression: Another look at the changepoint problem. Biometrika, 88: 793–804. https://doi.org/10.1093/biomet/88.3.793
 
Zinde-Walsh V, Galberaith J (1991). Estimation of a linear regression model with stationary ARMA($p,q$) errors. Journal of Econometrics, 47: 333–357. https://doi.org/10.1016/0304-4076(91)90106-N

Related articles PDF XML
Related articles PDF XML

Copyright
2024 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin University of China.
by logo by logo
Open access article under the CC BY license.

Keywords
autocorrelation efficient estimation hypothesis testing serial correlation time domain

Metrics
since February 2021
2720

Article info
views

1657

PDF
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

Journal of data science

  • Online ISSN: 1683-8602
  • Print ISSN: 1680-743X

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • JDS@ruc.edu.cn
  • No. 59 Zhongguancun Street, Haidian District Beijing, 100872, P.R. China
Powered by PubliMill  •  Privacy policy