Pub. online:17 Apr 2024Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 22, Issue 2 (2024): Special Issue: 2023 Symposium on Data Science and Statistics (SDSS): “Inquire, Investigate, Implement, Innovate”, pp. 298–313
Abstract
In randomized controlled trials, individual subjects experiencing recurrent events may display heterogeneous treatment effects. That is, certain subjects might experience beneficial effects, while others might observe negligible improvements or even encounter detrimental effects. To identify subgroups with heterogeneous treatment effects, an interaction survival tree approach is developed in this paper. The Classification and Regression Tree (CART) methodology (Breiman et al., 1984) is inherited to recursively partition the data into subsets that show the greatest interaction with the treatment. The heterogeneity of treatment effects is assessed through Cox’s proportional hazards model, with a frailty term to account for the correlation among recurrent events on each subject. A simulation study is conducted for evaluating the performance of the proposed method. Additionally, the method is applied to identify subgroups from a randomized, double-blind, placebo-controlled study for chronic granulomatous disease. R implementation code is publicly available on GitHub at the following URL: https://github.com/xgsu/IT-Frailty.
Pub. online:4 Aug 2022Type:Research ArticleOpen Access
Journal:Journal of Data Science
Volume 18, Issue 3 (2020): Special issue: Data Science in Action in Response to the Outbreak of COVID-19, pp. 455–472
Abstract
We propose a varying coefficient Susceptible-Infected-Removal (vSIR) model that allows changing infection and removal rates for the latest corona virus (COVID-19) outbreak in China. The vSIR model together with proposed estimation procedures allow one to track the reproductivity of the COVID-19 through time and to assess the effectiveness of the control measures implemented since Jan 23 2020 when the city of Wuhan was lockdown followed by an extremely high level of self-isolation in the population. Our study finds that the reproductivity of COVID-19 had been significantly slowed down in the three weeks from January 27th to February 17th with 96.3% and
95.1% reductions in the effective reproduction numbers R among the 30 provinces and 15 Hubei cities, respectively. Predictions to the ending times and the total numbers of infected are made under three scenarios of the removal rates. The paper provides a timely model and associated estimation and prediction methods which may be applied in other countries to track, assess and predict the epidemic of the COVID-19 or other infectious diseases