Tracking Reproductivity of COVID-19 Epidemic in China with Varying Coefficient SIR Model
Volume 18, Issue 3 (2020): Special issue: Data Science in Action in Response to the Outbreak of COVID-19, pp. 455–472
Pub. online: 4 August 2022
Type: Research Article
Open Access
Published
4 August 2022
4 August 2022
Abstract
We propose a varying coefficient Susceptible-Infected-Removal (vSIR) model that allows changing infection and removal rates for the latest corona virus (COVID-19) outbreak in China. The vSIR model together with proposed estimation procedures allow one to track the reproductivity of the COVID-19 through time and to assess the effectiveness of the control measures implemented since Jan 23 2020 when the city of Wuhan was lockdown followed by an extremely high level of self-isolation in the population. Our study finds that the reproductivity of COVID-19 had been significantly slowed down in the three weeks from January 27th to February 17th with 96.3% and
95.1% reductions in the effective reproduction numbers R among the 30 provinces and 15 Hubei cities, respectively. Predictions to the ending times and the total numbers of infected are made under three scenarios of the removal rates. The paper provides a timely model and associated estimation and prediction methods which may be applied in other countries to track, assess and predict the epidemic of the COVID-19 or other infectious diseases