Physician performance is critical to caring for patients admitted to the intensive care unit (ICU), who are in life-threatening situations and require high level medical care and interventions. Evaluating physicians is crucial for ensuring a high standard of medical care and fostering continuous performance improvement. The non-randomized nature of ICU data often results in imbalance in patient covariates across physician groups, making direct comparisons of the patients’ survival probabilities for each physician misleading. In this article, we utilize the propensity weighting method to address confounding, achieve covariates balance, and assess physician effects. Due to possible model misspecification, we compare the performance of the propensity weighting methods using both parametric models and super learning methods. When the generalized propensity or the quality function is not correctly specified within the parametric propensity weighting framework, super learning-based propensity weighting methods yield more efficient estimators. We demonstrate that utilizing propensity weighting offers an effective way to assess physician performance, a topic of considerable interest to hospital administrators.
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronvirus, which was declared as a global pandemic by the World Health Organization on March 11, 2020. In this work, we conduct a cross-sectional study to investigate how the infection fatality rate (IFR) of COVID-19 may be associated with possible geographical or demographical features of the infected population. We employ a multiple index model in combination with sliced inverse regression to facilitate the relationship between the IFR and possible risk factors. To select associated features for the infection fatality rate, we utilize an adaptive Lasso penalized sliced inverse regression method, which achieves variable selection and sufficient dimension reduction simultaneously with unimportant features removed automatically. We apply the proposed method to conduct a cross-sectional study for the COVID-19 data obtained from two time points of the outbreak.
The swift spread of the novel coronavirus is largely attributed to its stealthy transmissions in which infected patients may be asymptomatic or exhibit only flu-like symptoms in the early stage. Undetected transmissions present a remarkable challenge for the containment of the virus and pose an appalling threat to the public. An urgent question is on testing of the coronavirus. In this paper, we evaluate the situation from the statistical viewpoint by discussing the accuracy of test procedures and stress the importance of rationally interpreting test results.
Climate change is widely recognized as one of the most challenging, urgent and complex problem facing humanity. There are rising interests in understanding and quantifying climate changing. We analyze the climate trend in Canada using Canadian monthly surface air temperature, which is longitudinal data in nature with long time span. Analysis of such data is challenging due to the complexity of modeling and associated computation burdens. In this paper, we divide this type of longitudinal data into time blocks, conduct multivariate regression and utilize a vine copula model to account for the dependence among the multivariate error terms. This vine copula model allows separate specification of within-block and between-block dependence structure and has great flexibility of modeling complex association structures. To release the computational burden and concentrate on the structure of interest, we construct composite likelihood functions, which leave the connecting structure between time blocks unspecified. We discuss different estimation procedures and issues regarding model selection and prediction. We explore the prediction performance of our vine copula model by extensive simulation studies. An analysis of the Canada climate dataset is provided.