Abstract: Simulation studies are important statistical tools used to inves-tigate the performance, properties and adequacy of statistical models. The simulation of right censored time-to-event data involves the generation of two independent survival distributions, where the rst distribution repre-sents the uncensored survival times and the second distribution represents the censoring mechanism. In this brief report we discuss how we can make it so that the percentage of censored data is previously de ned. The described method was used to generate data from a Weibull distribution, but it can be adapted to any other lifetime distribution. We further presented an R code function for generating random samples, considering the proposed approach.
Abstract: The present article discusses and compares multiple testing procedures (MTPs) for controlling the family wise error rate. Machekano and Hubbard (2006) have proposed empirical Bayes approach that is a resampling based multiple testing procedure asymptotically controlling the familywise error rate. In this paper we provide some additional work on their procedure, and we develop resampling based step-down procedure asymptotically controlling the familywise error rate for testing the families of one-sided hypotheses. We apply these procedures for making successive comparisons between the treatment effects under a simple-order assumption. For example, the treatment means may be a sequences of increasing dose levels of a drug. Using simulations, we demonstrate that the proposed step-down procedure is less conservative than the Machekano and Hubbard’s procedure. The application of the procedure is illustrated with an example.
Abstract: The detection of slope change points in wind curves depends on linear curve-fitting. Hall and Titterington’s algorithm based on smoothing is adapted and compared to a Bayesian method of curve-fitting. After prior spline smoothing of the data, the algorithms are tested and the errors between the split-linear fitted wind and the real one are estimated. In our case, the adaptation of the edge-preserving smoothing algorithm gives the same good performance as automatic Bayesian curve-fitting based on a Monte Carlo Markov chain algorithm yet saves computation time.
Compositional data consist of known compositions vectors whose components are positive and defined in the interval (0,1) representing proportions or fractions of a “whole”. The sum of these components must be equal to one. Compositional data is present in different knowledge areas, as in geology, economy, medicine among many others. In this paper, we propose a new statistical tool for volleyball data, i.e., we introduce a Bayesian anal- ysis for compositional regression applying additive log-ratio (ALR) trans- formation and assuming uncorrelated and correlated errors. The Bayesian inference procedure based on Markov Chain Monte Carlo Methods (MCMC). The methodology is applied on an artificial and a real data set of volleyball.
The surrogate markers(SM) are the important factor for angiogenesis in cancer patients.In Metronomic Chemotherapy (MC) , physicians administer subtoxic doses of chemotherapy (without break) for long periods, to the target tumor angiogenesis. We propose a semiparametric approach, predictive risk modeling and time to control the level of surrogate marker to detect the perfect dose level of MC. It is based on the controlled level of surrogate marker, and the aim is to detect an Optimum Biological Dose (OBD) finding rather than a traditional Maximum Tolerated Dose (MTD) approach. The methods are illustrated with MC trial dataset to determine the best OBD and we investigate the performance of the model through simulation studies.