
A Online Supplements Part One: Additional Simulation Result:

Joint Test of Significance

In order to illustrate the performance of the feasible GLS-AR procedure vis-à-vis other procedures
for joint tests of significance we first augmented the simulated regression model (21) to include
two additional exogenous variables {z1t, z2t} where the generating process for z1t followed an
AR(1) process with the coefficient φz1 = {0.0, 0.5, 0.9} and z2t was assumed to be i.i.d., i.e.,
φz2 = {0.0}. Then using the regression model,

yt = 2.0 + 0.5xt + 0.0z1t + 0.0z2t + ut, (A.1)

we conducted an F−test to ascertain the validity of the null hypothesis βz1 = βz2 = 0. (In the
above specification xt was generated as an i.i.d. process.) Table 1 contains the percentages of the
times the various approaches rejected the null hypothesis (with nominal level set at 5%) for several
combinations of exogenous variables and a few selected residual serial correlation structures. We
did not include results for joint tests based on HAC estimators because, as pointed out by Kiefer
et al. (2000), ‘in finite samples [they] can lead to tests that have substantial size distortions,’
(p. 696). Moreover, from our review of the literature they are seldom used in practice, and to
our knowledge, computer routines with such tests are not readily available. Kiefer, Vogelsang,
and Bunzel, however, developed a “robust” joint test (denoted as KVB) that has a nonstandard
asymptotic distribution that depends on the number of restrictions being tested and critical
asymptotic values. In that study they reported results for their test statistic for several AR(1) and
MA(1) serial correlation structures. Although neither their model specifications nor sample sizes
were the same as ours, for completeness, we include their finite sample null rejection probabilities
for the specifications that most closely matched ours, namely AR(1) (φ1 = 0.5, 0.9) HOMO q = 2
and MA(1) (θ1 = {0.5, 0.7, 0.99}) HOMO q = 2 for n = 128 and 256 observations.

From Table 1, we can see that for all but the AR(1) serial correlation structures, the feasible
GLS-AR approach rejected the null hypothesis close to 5% of the time regardless of the structure
of the exogenous variables. Improvement can be observed also when sample size is increased. For
the AR(1) serial correlation structures the procedure tended to over-reject the null hypothesis.
However, as anticipated, as sample size increased the probabilities of rejecting the null hypothesis
began to approach their nominal levels. The performance of feasible GLS also improved as the
sample increased. The F−tests based on feasible GLS were closer to their nominal levels for
the AR(1) serial correlation structures than for the other forms of the autocorrelation reported
here. For these latter structures, particularly for the smaller sample sizes, feasible GLS tended
to over-reject (often by quite a substantial margin) the null hypothesis. Similar to the results
of the t statistics, in finite samples, the F tests based on feasible GLS estimators are not well
approximated by the F distributions unless the sample sizes are large (about 500 for some residual
autocorrelation structures).

The null rejection probabilities using the KVB statistic were 9% and 27.3% (AR(1) (φ1 =
0.5, 0.9) and 7.8% (for the three MA(1) parametrizations) when n = 128 observations. When
n = 256 only the probabilities for two AR(1) serial correlation structures were reported; they
were 7% and 17%.

The performance of OLS, as expected, was very volatile and highly dependent of the struc-
ture of the serial correlation and the structure of the exogenous variables. For example, for the
ARMA(1,1) serial correlation structure with φ = 0.8 and θ = −0.7, the OLS procedure tended
to reject the null hypothesis approximately 5.18%, 18.18%, and 40.94% when the AR(1) struc-
ture of z1 was set at 0.0, 0.5, and 0.9, respectively. For the MA(1) residual correlation structure,



OLS had a tendency to under reject the null hypothesis when z1 was generated by a nonzero
autoregressive process. These results corroborate the general findings of Banerjee and Magnus
(2000) that the F−statistic is not robust based on OLS residuals. However, they differ somewhat
from the conclusion that “if the null hypothesis is accepted using the usual F−statistic, it [the
null] will also be accepted if the disturbances are not white.” This is because their study only
considered AR(1) serial correlation structures (see also Rothengery (1988)).

B Online Supplements Part Two: Appendix

Notations and Preliminaries

For a vector x, ‖x‖ = (x′x)1/2 denotes the Euclidean norm; for a symmetric matrix A, ‖A‖ =
sup{x′Ax : ‖x‖ = 1}; for two symmetric matrices A and B, A > B means that A − B is
nonnegative definite; An = o(1)Bn means that for any δ > 0, δBn − An > 0 and An + δBn > 0
for sufficiently large n, where An and Bn are symmetric matrix.

A matrix C = (cij , 1 6 i, j 6 n), C is said to diagonally dominant if
∑

j 6=i |cij | 6 |cii| for
each 1 6 i 6 n. If C is symmetric and diagonally dominant with cii > 0 for each i, then C is
nonnegative definite. As a consequence, for any symmetric matrix C = (cij),

C 6 λIn, (A.2)

where λ = maxi(
∑

j |cij |) and In denotes the n× n identity matrix. Thus, by (7),

Σn 6 crIn. (A.3)

Let A = (aij)∞×∞, where aij = aj−i with a0 = 1 and ak = 0 for k < 0; similarly set
B = (bij)∞×∞, where bij = bj−i with b0 = 1 and bk = 0 for k < 0. Clearly, (H1) and (8)
imply that A−1 = B. By (H2) and (A.2), there exists c0 > 0 such that A′A 6

1
c0
I∞ and hence

BB′ = (A′A)−1 > c0I∞. Since Σn is a principal submatrix of BB′, we also have

Σn > c0In. (A.4)

The following four lemmas show that Σ̂n is close to Σn with high probability which makes
it possible to replace Σ̂n by Σn.

Lemma A1. Let
ηi =

∑

−∞<l<∞

ai,lǫl,

where {ǫj ,−∞ < j < ∞} are i.i.d. with Eǫ0 = 0, Eǫ20 = σ2, and Eǫ40 < ∞. Then

V ar(
m
∑

i=1

ηiηi+j) 6 σ−4Eǫ40Tr(Σ2
η), (A.5)

where Ση is the covariance matrix of (η1, · · · , ηm+j).

Proof: We have

ηiηi+j =
∑

l

∑

k

ǫlǫkai,lai+j,k



Table 1: Empirical Size of the F -Statistic Based on Different Estimators for a Variety of Serial
Correlations (Nominal Size 5%)

φz1 = −0.5a φz1 = 0.0a φz1 = 0.5a

Estimatorsb Estimatorsb Estimatorsb

FGLS- FGLS- FGLS- FGLS- FGLS- FGLS-
n OLS FGLS AR(1) AR(p̃) OLS FGLS AR(1) AR(p̃) OLS FGLS AR(1) AR(p̃)

Residual Serial Correlation: AR(1) φ1 = 0.5
50 4.2 6.3 6.3 7.2 10.8 5.4 5.4 7.0 17 6.8 6.8 11.2
100 6.8 5.9 5.9 8.5 10.7 5.9 5.9 8.9 17.8 6.2 6.2 8.9
200 4.7 5.5 5.5 6.6 11.4 5.1 5.1 5.8 19.6 5.7 5.7 8.2
500 5.1 4.6 5.2 5.9 12.2 5.4 5.2 5.6 19.6 5.3 5.1 6.1
1000 4.9 4.6 5.1 5.3 10.2 5.0 5.2 5.2 19.0 5.2 4.8 5.3

Residual Serial Correlation: AR(1) φ1 = 0.9
50 4.7 4.4 4.4 7.1 16.8 4.6 4.6 6.3 39.2 4.8 4.8 7.6
100 4.5 5.5 5.5 7.6 16.3 5.1 5.1 7.9 44.2 5.6 5.6 9.1
200 4.7 5.3 5.3 7.4 18.2 4.8 4.8 6.2 46.7 5.2 5.2 6.6
500 5.3 5.4 5.3 6.2 21.2 5.6 5.1 5.8 51.8 5.4 5.4 6.2
1000 5.1 5.3 5.1 5.5 19.5 5.2 4.8 5.1 48.0 5.4 5.1 5.3

Residual Serial Correlation: MA(1) θ1 = 0.5
50 5.4 7.3 3.5 6.2 3.3 6.6 2.7 6.2 1.9 6.5 2.1 6.5
100 5.8 6.2 3.8 5.2 2.8 5.1 3.5 5.8 1.6 5.0 2.4 6.3
200 5.0 4.8 4.1 5.5 3.0 4.8 3.3 4.9 1.9 4.7 3.0 5.2
500 5.3 4.5 4.9 5.4 2.7 4.6 3.2 5.3 1.9 5.1 3.2 5.5
1000 5.3 4.7 4.8 5.2 3.7 5.0 3.6 5.1 2.1 5.2 3.7 5.1

Residual Serial Correlation: MA(1) θ1 = 0.9
50 6.2 21.6 3.3 4.3 3.1 24.1 1.4 4.4 1.5 26.0 1.4 3.3
100 5.2 13.3 3.4 4.6 2.6 14.0 2.3 4.6 1.9 15.6 1.6 3.4
200 4.7 6.8 4.0 4.7 2.5 6.1 2.6 4.7 1.6 6.7 2.2 3.6
500 4.8 4.7 3.9 4.8 2.0 4.5 2.7 4.5 1.5 5.3 2.5 4.3
1000 5.1 5.2 4.3 4.9 1.7 4.6 3.8 4.9 2.2 5.1 3.8 4.8

Residual Serial Correlation: ARMA(1,1) φ1 = 0.8; θ1 = −0.7
50 5.0 8.5 0.9 5.9 15.6 9.4 1.8 6.7 37 9.7 2.9 6.5
100 5.1 5.3 1.5 4.8 17.0 5.6 2.0 4.9 40.0 5.7 2.7 4.7
200 4.7 4.7 2.2 4.8 17.0 4.9 2.6 5.3 39.9 4.4 2.8 5.7
500 5.6 4.8 1.9 5.1 19.2 4.7 2.5 5.5 42.1 5.5 3.1 5.7
1000 5.5 4.8 2.8 4.8 22.1 4.8 3.8 5.3 45.7 5.3 4.3 5.4

Residual Serial Correlation: ARMA(2,1) φ1 = 1.4, φ2 = −0.6; θ1 = 0.8
50 5.1 15.8 0.4 3.8 16.8 16.0 1.5 4.3 36.1 15.5 2.3 4.3
100 5.4 8.5 0.8 4.7 16.7 9.3 2.4 4.8 36.2 8.3 2.7 4.8
200 5.2 8.0 1.2 4.7 19.0 5.7 2.5 4.6 39.5 5.4 3.4 4.9
500 5.5 4.4 1.1 4.9 19.3 4.4 2.6 5.3 36.2 5.2 3.8 5.5
1000 5.4 4.5 3.0 5.3 19.5 4.8 3.7 5.1 37.0 5.1 4.6 5.2

a. φz1=AR coefficient associated the generating process for the exogenous variable z1t.
b. Estimators: OLS= Ordinary Least Squares; AR(1)=Estimated Generalized Least Squares Estimator with

AR(1) Correction for the Residual Serial Correlation; FGLS=Feasible Generalized Least Squares Estimator with
the Corrected Residual Autocorrelation Structure; AR(p̃)=Feasible Generalized Least Squares Estimator with

AR(p̃) Correction for the Residual Serial Correlation (p̃ = [2n1/4]).



and

m
∑

i=1

ηiηi+j =
∑

l

∑

k

ǫlǫk

m
∑

i=1

ai,lai+j,k =
∑

l

ǫ2l

m
∑

i=1

ai,lai+j,l +
∑

l 6=k

ǫlǫk

m
∑

i=1

ai,lai+j,k

Therefore

V ar(
m
∑

i=1

ηiηi+j) =
∑

l

V ar(ǫ2l )(
m
∑

i=1

ai,lai+j,l)
2 +

∑

l 6=k

σ4(
m
∑

i=1

ai,lai+j,k)
2

6 Eǫ40
∑

l,k

(
m
∑

i=1

ai,lai+j,k)
2 (A.6)

Note that
Eηiηi′ = σ2

∑

l

ai,lai′,l

and

∑

l,k

(
m
∑

i=1

ai,lai+j,k)
2 =

∑

l,k

m
∑

i=1

m
∑

i′=1

ai,lai+j,kai′,lai′+j,k

=
m
∑

i=1

m
∑

i′=1

∑

l

ai,lai′,l
∑

k

ai+j,kai′+j,k

= σ−4

m
∑

i=1

m
∑

i′=1

E(ηiηi′)E(ηi+jηi′+j)

6 σ−4

m
∑

i=1

m
∑

i′=1

(1/2){(E(ηiηi′))
2 + (E(ηi+jηi′+j))

2}

6 σ−4Tr(Σ2
η) (A.7)

as desired.

Lemma A2. We have
Tr(Σ2

û) 6 c2rn. (A.8)

Proof: Recall û = (In −X(X ′X)−1X ′)u, we have

Σû = (In −X(X ′X)−1X ′)Σn(In −X(X ′X)−1X ′) (A.9)

and by the fact that (In −X(X ′X)−1X ′)2 = In −X(X ′X)−1X ′,

Tr(Σ2
û) = Tr

(

In −X(X ′X)−1X ′)Σn(In −X(X ′X)−1X ′)2Σn(In −X(X ′X)−1X ′)
)

= Tr
(

Σn(In −X(X ′X)−1X ′)2Σn(In −X(X ′X)−1X ′)2
)

= Tr
(

Σn(In −X(X ′X)−1X ′)Σn(In −X(X ′X)−1X ′)
)

= Tr
(

(Σn(In −X(X ′X)−1X ′))2
)

. (A.10)



For A = (aij , 1 6 i, j 6 n), consider now Tr((ΣnA)2), the total sum of squared entries of
ΣnA. Since both Σn and A are symmetric, we have

Tr((ΣnA)2) =
n
∑

i=1

n
∑

j=1

(
n
∑

l=1

σilalj)
2
6

n
∑

i=1

n
∑

j=1

(
n
∑

l=1

|ri−l|)(
n
∑

l=1

|ri−l|a2lj)

6 cr

n
∑

i=1

n
∑

j=1

n
∑

l=1

|ri−l|a2lj = cr

n
∑

l=1

n
∑

j=1

a2lj

n
∑

i=1

|ri−l|

6 c2r

n
∑

l=1

n
∑

j=1

a2lj = c2rTr(AA′). (A.11)

Hence

Tr
(

(Σn(In −X(X ′X)−1X ′))2
)

6 c2rTr((In −X(X ′X)−1X ′)2)

= c2rTr((In −X(X ′X)−1X ′)) = c2r(n− k) (A.12)

here we use the fact that X(X ′X)−1X ′ is non-negative definitive and hence the diagonal is
nonnegative.

Lemma A3. Let 1 6 p 6 n/2. Then for δ > 0,

P (

p
∑

j=0

|r̂j − E(r̂j)| > δ) 6 P (

p
∑

j=0

|r̂j − E(r̂j)|2 > δ2/(p+ 1)) 6
8p2E(ǫ40)c

2
r

σ4nδ2
. (A.13)

Proof: The first inequality in (A.13) follows from the Cauchy inequality

(

p
∑

j=0

|r̂j − Er̂j |)2 6 (p+ 1)

p
∑

j=0

|r̂j − Er̂j |2.

As to the second inequality, by Lemmas A1 and A2,

E(r̂j − Er̂j)
2
6

E(ǫ40)c
2
rn

σ4(n− p)2
6

4E(ǫ40)cr
2

σ4n
(A.14)

and hence

P (

p
∑

j=0

|r̂j − Er̂j |2 > δ2/p) 6
p+ 1

δ2

p
∑

j=0

E|r̂j − Er̂j |2 6
8p2E(ǫ40)cr

2

σ4nδ2
, (A.15)

as desired.

Lemma A4. For 0 6 j 6 p, we have

|E(r̂j)− rj | 6 3crh
∗
n (A.16)



Proof: Let H = X(X ′X)−1X ′. By (A.9), the covariance matrix of û is given by

Σû = Σn − (ΣnH +HΣn −HΣnH) ≡ Σn −Kn.

Recall h∗n = maxiHii. Since H is nonnegative definite, |Hij | 6 h∗n. Clearly,

|(ΣnH)i,j | = |
n
∑

l=1

σilhlj | 6 h∗nσil|σil| 6 crh
∗
n,

|(HΣn)i,j | 6 crh
∗
n,

and note HΣnH is nonnegative definite, we have

|(HΣnH)ij | 6 (HΣnH)ii =
∑

l,l′

hilσl l′hl′i 6 (1/2)
∑

l,l′

|σl l′ |(h2il + h2l′i)

=
∑

l

h2il
∑

l′

|σl l′ | 6 cr
∑

l

h2il = cr(HH)ii = crHii 6 crh
∗
n. (A.17)

We are now ready to prove Lemmas 1 - 3.
Proof of Lemma 1. It is easy to see that

E(Wn,1W
′
n,1) = (X ′Σ−1

n X)−1X ′Σ−1
n ΣnΣ

−1
n X(X ′Σ−1

n X)−1 = (X ′Σ−1
n X)−1

and hence by (H4),
nατ ′E(Wn,1W

′
n,1)τ → τ ′A−1

0 τ. (A.18)

Note that τ ′Wn,1 is a linear combination of i.i.d. random variables, the central limit theorem
(13) holds.
Proof of Lemma 2. Since p = o(

√
n) and ph∗n = o(1), by (A.13) and (A.16), there exists δn → 0

such that P (Dc
n) → 0, where Dn = {

∑p
j=0 |r̂j − rj | 6 δn}. Thus, it suffices to show that

E|τ ′((X ′Σ̂−1
n X)−1 − (X ′Σ−1

n X)−1)X ′Σ−1
n u|1Dn = o(n−α/2). (A.19)

By the Cauchy inequality,

E|τ ′((X ′Σ̂−1
n X)−1 − (X ′Σ−1

n X)−1)X ′Σ−1
n u|1Dn

6
(

E‖τ ′((X ′Σ̂−1
n X)−1 − (X ′Σ−1

n X)−1)‖21Dn

)1/2(
E‖u′Σ−1

n X‖2
)1/2

≡ K
1/2
n,1 K

1/2
n,2 . (A.20)

Observe that

Kn,2 = E
(

Tr(X ′Σ−1
n uu′Σ−1

n X)
)

= Tr
(

E((X ′Σ−1
n uu′Σ−1

n X)
)

= Tr
(

X ′Σ−1
n ΣnΣ

−1
n X)

)

= Tr
(

X ′Σ−1
n X

)

= O(nα). (A.21)

As to Kn,1, note that Σ̂n is (2p+ 1)th diagonal. By (A.16), for 1 6 i 6 n on the event Dn

n
∑

l=1

|(Σ̂n − Σn)il| 6
∑

l:|i−l|6p

|r̂|i−l| − r|i−l||+
∑

l:|i−l|>p

|r|i−l||

6 δn +
∑

l:|i−l|>p

|r|i−l|| = o(1). (A.22)



Therefore Σ̂n − Σn = o(1)In. By (A.4), Σ̂n > c0In and hence Σ̂n − Σn = o(1)Σn, i.e., Σ̂n =
(1 + o(1))Σn. By the fact that A 6 B implies (X ′A−1X)−1 6 (X ′B−1X)−1, we have for any
0 < δ < 1/2, on the event Dn

(X ′Σ̂−1
n X)−1 − (X ′Σ−1

n X)−1
6 (1 + o(1))(X ′Σ−1

n X)−1 − (X ′Σ−1
n X)−1

= o(1)(X ′Σ−1
n X)−1 = o(1)n−αIk (A.23)

by (H4). Similarly,
(X ′Σ−1

n X)−1 − (X ′Σ̂−1
n X)−1 = o(1)n−αIk. (A.24)

Now (A.23) and (A.24) yield

((X ′Σ−1
n X)−1 − (X ′Σ̂−1

n X)−1)2 = o(1)n−2αIk (A.25)

Therefore,

Kn,1 6 Eτ ′((X ′Σ̂−1
n X)−1 − (X ′Σ−1

n X)−1)(X ′Σ̂−1
n X)−1 − (X ′Σ−1

n X)−1)τ1Dn

6 E(o(1)n−2ατ ′τ) = o(n−2α). (A.26)

This proves (A.19) by combining results from (A.20), (A.21) and (A.26).
Proof of Lemma 3. Since p = o(n1/4), by (A.13) again, there exists δn = o(n−1/4) such that
P (Dc

n) → 0, where Dn = {
∑p

j=0 |r̂j − Er̂j |2 6 δ2n/(p+ 1)}. It suffices to show that

E(|τ ′(X ′Σ̂−1
n X)−1X ′(Σ̂−1

n −GΣ−1
n )u|1Dn) = o(n−α/2) (A.27)

By the Cauchy inequality again, we have

E(|τ ′(X ′Σ̂−1
n X)−1X ′(Σ̂−1

n −GΣ−1
n )u|1Dn) 6 (Kn,3Kn,4)

1/2, (A.28)

where
Kn,3 = E‖(X ′Σ̂−1

n X)−1τ 1Dn‖2, Kn,4 = E‖X ′(Σ̂−1
n − Σ−1

n )u1Dn‖2

Similarly to (A.26),
Kn,3 = O(n−2α). (A.29)

To estimate Kn,4, let Gn = E(Σ̂n) and write

X ′(Σ̂−1
n − Σ−1

n ) = X ′Σ̂−1
n (Σn − Σ̂n)Σ

−1
n

= X ′Σ̂−1
n (Gn − Σ̂n)Σ

−1
n +X ′Σ̂−1

n (Σn −Gn)Σ
−1
n

= X ′G−1
n (Gn − Σ̂n)Σ

−1
n +X ′(Σ̂−1

n −G−1
n )(Gn − Σ̂n)Σ

−1
n

+X ′Σ̂−1
n (Σn −Gn)Σ

−1
n

= X ′G−1
n (Gn − Σ̂n)Σ

−1
n (A.30)

+X ′Σ̂−1
n (Gn − Σ̂n)G

−1
n )(Gn − Σ̂n)Σ

−1
n

+X ′Σ̂−1
n (Σn −Gn)Σ

−1
n (A.31)

Thus,
Kn,4 6 3Kn,5 + 3Kn,6 +Kn,7, (A.32)

where
Kn,5 = E‖X ′G−1

n (Gn − Σ̂n)Σ
−1
n u 1Dn‖2,

Kn,6 = E‖X ′Σ̂−1
n (Gn − Σ̂n)G

−1
n (Gn − Σ̂n)Σ

−1
n u 1Dn‖2,

Kn,7 = E‖X ′Σ̂−1
n (Σn −Gn)Σ

−1
n u 1Dn‖2.



Let v = Σ−1
n u and

A = X ′Σ̂−1
n (Gn − Σ̂n)G

−1
n (Gn − Σ̂n).

Observe that ‖Av‖2 6 Tr(AA′)‖v‖2 6 k λ(AA′)‖v‖2, where λ(AA′) denotes the maximum eigen-
value of AA′. To get an upper bound of the maximum eigenvalue of AA′, we note that on the
event Dn

AA′
6 X ′Σ̂−1

n (Gn − Σ̂n)G
−1
n δ2nG

−1
n (Gn − Σ̂n)Σ̂

−1
n X

6 cδ2nX
′Σ̂−1

n (Gn − Σ̂n)
2Σ̂−1

n X 6 cδ4nX
′Σ̂−2

n X 6 cδ4nn
αIk, (A.33)

where c denotes a finite constant whose value may be different at each appearance. Hence
λ(AA′) = O(δ4nn

α). It is easy to see that E‖v‖2 = O(n). Therefore,

Kn,6 = o(nα) (A.34)

by the choice of δn = o(n−1/4).
To deal with Kn,5, let v = (v1, v2, · · · , vn) = Σ−1

n , σ̄ij = σ̂ij −Eσ̂ij , r̄j = r̂j −Er̂j , and write
X ′G−1

n = (aij , 1 6 i 6 k, 1 6 j 6 n). Then

‖X ′G−1
n (Gn − Σ̂n)Σ

−1
n u‖2 =

k
∑

i=1

(
n
∑

j=1

aij

n
∑

l=1

σ̄jlvl)
2 (A.35)

and

n
∑

j=1

aij

n
∑

l=1

σ̄jlvl =
n
∑

j=1

aij

n
∑

l=1

r̄|j−l|vl

=
n
∑

j=1

aij
∑

l

r̄|l|vj−l [here vk = 0 for k < 0]

=
∑

|l|6p

r̄|l|

n
∑

j=1

aijvj−l. (A.36)

Thus,

(

n
∑

j=1

aij

n
∑

l=1

σ̄jlvl)
21Dn 6 (

∑

|l|6p

r̄2l 1Dn)(
∑

|l|6p

(

n
∑

j=1

aijvj−l)
2) 6 (δ2n/p)

∑

|l|6p

(

n
∑

j=1

aijvj−l)
2. (A.37)

It is easy to see that the covariance matrix Σv of v satisfies Σv 6 cIn and hence

E(
n
∑

j=1

aijvj−l)
2
6 c

n
∑

j=1

a2ij .

Combining all inequalities above yields

E(
n
∑

j=1

aij

n
∑

l=1

σ̄jlvl)
21Dn 6 c5δ

2
n

n
∑

j=1

a2ij



and

Kn,5 6 c5δ
2
n

k
∑

i=1

n
∑

j=1

a2ij = c5δ
2
nTr(X ′G−1

n G−1
n X) = O(δ2n n

α) = o(nα) (A.38)

as desired. Similarly, we have
Kn,7 = o(nα).

This completes the proof of Lemma 3 by putting the above inequalities together.
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