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Abstract

Linear regression models are widely used in empirical studies. When serial correlation is present
in the residuals, generalized least squares (GLS) estimation is commonly used to improve es-
timation efficiency. This paper proposes the use of an alternative estimator, the approximate
generalized least squares estimators based on high-order AR(p) processes (GLS-AR). We show
that GLS-AR estimators are asymptotically efficient as GLS estimators, as both the number
of AR lag, p, and the number of observations, n, increase together so that p = o(n1/4) in the
limit. The proposed GLS-AR estimators do not require the identification of the residual se-
rial autocorrelation structure and perform more robust in finite samples than the conventional
FGLS-based tests. Finally, we illustrate the usefulness of GLS-AR method by applying it to the
global warming data from 1850–2012.

Keywords autocorrelation; efficient estimation; hypothesis testing; serial correlation; time
domain

1 Introduction
Linear regression models are widely used in empirical studies. When serial correlation is present
in the residuals, generalized least squares (GLS) estimation is commonly used to obtain estimates
for the regression coefficients and to generate forecasts. In this article we propose the use of an
alternative estimator, the approximate generalized least squares estimators based on high-order
AR processes (GLS-AR). We show that although GLS and GLS-AR estimators are asymptot-
ically equivalent, they differ appreciably in terms of finite sample properties. For sample sizes
typically found in empirical research, statistical inferences based on tests using GLS-AR are
more robust and reliable than those based on GLS estimation as well as those based on generic,
multipurpose procedures such as heteroscedastic autocorrelation consistent (HAC) estimation.

Although extensive research has been conducted over the last five decades on the properties
of estimators and predictors obtained from serially correlated regression models since the seminal
contributions of Cochrane and Orcutt (1949) and Prais and Winsten (1954), until recently, with
few exceptions (noticeably Goldberger, 1962; Amemiya, 1973; Engle, 1974), most of the studies
assumed that the error covariance matrix �n from the regression model,

Y = Xβ + u, (1)
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where Y is an (n×1) vector of observations on a dependent variable, X is a (n×k) design matrix
with full column rank and u is an (n × 1) random vector with E(u|X) = 0 and E(u′u|X) = �n,
was either known or could be estimated consistently from the data so that GLS could be used
to estimate the regression model.

In practice, of course, the error terms are unobservable quantities and their covariance
structures have to be identified from the data as part of the specification of the model. Identifi-
cation of the structure of the covariance matrix �n when GLS is used to estimate the regression
model with autocorrelated disturbances, however, as noted by Walker (1967), Kadiyala (1970),
King (1983), and Koreisha and Pukkila (1985) among others is difficult and challenging. Walker
and King discussed the practical difficulties of testing for the autoregressive model of order one
(AR(1)) against the moving average model of order one (MA(1)) disturbances. Kadiyala has
shown that the null hypothesis that u follows N(0, �n,1) cannot be tested against the alterna-
tive hypothesis that u follows N(0, �n,2) under certain conditions on �n,i (i = 1, 2) and the
design matrix X. The test aside from a scalar factor may have the same distribution for both
the null and the alternative hypotheses. Moreover, as pointed out by Thursby (1987), if the
regression suffers from omitted variables, then it may not be possible to identify the form of the
autocorrelation present in the regression model.

As an alternative to GLS, several more recent studies have considered the use of high-order
AR models to approximate the more general linear model. Maddala (2001) (p. 250), for instance,
argued that “. . . from the practical point of view, for most economic data, it is just sufficient
to determine the order of the AR process. Thus, if a significant DW statistic is observed, the
appropriate strategy would be to try see whether the errors are generated by a higher-order
AR process than AR(1) and then undertake estimation.” (He did not provide any theoretical
justification for this approach). Koreisha and Fang (2001) compared the asymptotic and finite
sample efficiencies of ordinary least squares (OLS) and GLS vis-à-vis GLS-AR. They showed
that under some regularity conditions GLS-AR estimators are consistent. They found that the
feasible GLS-AR estimators yielded more efficient estimates than OLS, and were comparable to
feasible GLS particularly when the order of the autoregression was set near [n1/2].

In this study we will derive the asymptotic distributional properties of GLS-AR(p) esti-
mators, and construct test statistics based on them for testing the significance of regression
coefficients. In particular we will show that as p increases at an appropriate rate dependent on
n, the GLS-AR estimators, will yield estimates for serially correlated regression parameters that
are asymptotically efficient, and that have the same limiting distribution as those of GLS esti-
mators based on correct residual autocovariance structures. Thus, since the GLS-AR estimators
are best linear unbiased estimators (BLUE), there is not much to be gained in trying to identify
the correct order and form of the serial correlation since estimation and inferences about the
regression coefficients can be efficiently made based on AR corrections.

Our theoretical contributions, as we will show, extend previous findings in pure time series
settings (and most often in the frequency domain, e.g. Berk (1974)’s classic paper) to time
series regression models under very general structures of design matrices including time trend
regressors.

More specifically we will consider the following estimators of β for the linear regression
model specified by (1):

β̂ = (X′�−1
n X)−1X′�−1

n Y, (2)

where �n is a positive definite matrix. Setting �n = In in (2) defines the OLS estimator, β̂OLS; if
�n = �n, then (2) yields the well-known GLS estimator, β̂GLS. If the structure of �n is known,
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but its elements have to be estimated, i.e., �n = �̂n, then we will refer to (2) as feasible GLS
and denote it as β̂FGLS. We will refer to (2) as the GLS-AR, β̂GLS-AR, if �n is based on high-order
AR processes.

We also consider the Newey-West’s HAC estimators, which as the GLS-AR estimators, do
not require the identification of the residual autocovariance structures. We note, however, that
the HAC procedure is designed to provide consistent estimates of covariance matrices of residuals
in regression models with both autocorrelated and heteroscedastic residuals. Nevertheless, we
include HAC in our simulation comparisons because it is often used by practitioners analyzing
linear models with autocorrelated residuals regardless of the form of the covariance structure.

Finally, we note that the idea of using a sequence of autoregressions to whiten a station-
ary time series has a long history in statistics, and has played an important role in developing
new statistical techniques in many research areas. For example, we may reference the works
of Koreisha and Pukkila (1985) and Pukkila et al. (1990) on estimation and identification of
ARMA models; Saikkonen (1991) on developing asymptotically efficient estimation of cointegra-
tion regressions, and more recently, Harvey et al. (2010) on detecting multiple level breaks in
autocorrelated time series; Choi and Kurozumi (2012) on model selection criteria for the leads-
and-lags cointegrating regression; Chambers et al. (2014) on testing for seasonal unit roots; and
Chambers (2013) on Jackknife estimation of stationary autoregressive models. We are optimistic
that our theoretical developments in the time domain will lead to similar advances in time series
analysis.

The article will be organized as follows: in Section 2 we present the large-sample distribution
properties of GLS-AR estimators; in Section 3 we provide the results from an exhaustive Monte
Carlo study contrasting the empirical sizes and power of test statistics based on several GLS,
GLS-AR, and HAC estimators; in Section 4 we present an empirical application using global
warming data; and finally, in Section 5 we offer some concluding remarks. All technical proofs
and additional simulation results are available at Online Supplement.

2 Large-Sample Distributional Properties of GLS-AR Estima-
tors

In this section we will first derive the asymptotic properties of the feasible GLS-AR estimator
(β̂FGLS-AR). In Theorem 1, we will show that under some classic regression regularity conditions
and for sufficiently large p, β̂FGLS-AR is asymptotically efficient, normally distributed with vari-
ance approaching that of the GLS estimator β̂GLS. Then, in Section 2.2, we will show how to
conduct parameter inferences about the regression coefficients.

2.1 Asymptotic Properties of Feasible GLS-AR Estimators

To construct β̂FGLS-AR we first run a least squares regression to obtain an estimator for u and
its covariance matrix �n assuming that u can be approximated by a finite-order autoregressive
process.

Let û = Y − Xβ̂OLS, then

û = Y − X(β + (X′X)−1X′u) = (In − X(X′X)−1X′)u. (3)

We define
β̂FGLS-AR ≡ (X′�̂−1

n X)−1X′�̂−1
n Y, (4)
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where �̂n = (σ̂i,j , 1 � i, j � n) and the entries in �̂n, σ̂i,j = r̂|j−i| are estimated using

r̂j ≡ r̂j (p) =
{

1
n−p

∑n−p

i=1 ûi ûi+j , for 0 � j � p � n

0 for j > p.
(5)

To show that β̂FGLS-AR is efficient and normally distributed it is necessary to make the
following assumptions on X and u:

Assumptions.
(H1) There exists {ai} such that for i � 1,

∞∑
l=0

alui−l = εi, (6)

where {εi} are i.i.d. with E(εi) = 0, E(ε2
i ) = σ 2, E(|εi |4) < ∞.

(H2)
∑∞

i=0 |ai | < ∞.
(H3) A(z) = 1 + ∑∞

l=1 aiz
i is nonzero for z such as |z| � 1.

(H4) limn→∞ n−αX′�−1
n X = A0 for some α > 0, where A0 is finite and non-singular.

(H5) Let hi be the i-th diagonal element of the matrix H ≡ X(X′X)−1X′. As n → ∞, p h∗
n =

O(1), where p = o(n1/4) and h∗
n = max{hi}.

Assumptions (H1)–(H3) are the standard assumptions (Kunitomo and Yamamoto, 1985;
Bhansali, 1986; Bhansali and Papangeloup, 1991) imposed for stationarity of {ui} so that the
covariance function is absolutely summable

cr ≡ 2
∞∑

j=0

|rj | < ∞. (7)

These assumptions also guarantee that {ui} has an infinite order moving average representation
(Wold’s decomposition theorem (Amemiya, 1973)),

ui =
∞∑
l=0

blεi−l (8)

for some {bi}, where
∞∑
i=0

|bi | < ∞. (9)

Assumption (H4) is commonly required in constructing GLS estimators (see Judge et al.,
1985). It is a sufficient condition used to show the consistency and the asymptotic normality
of β̂FGLS-AR. Note that we make this assumption in a very unrestrictive way such that α does
not have to be 1 to include a wide class of dynamics of regressors. For example, it includes the
time trend regressor as a special case (i.e., α = 3). It rules out, however, regressions with slowly
varying regressors, in which case the regressors are asymptotically collinear (Phillips, 2007). We
further note that the value of α could be different for each regressor. However, we present the
results only for the same normalization in terms of nα to avoid more complications in notation.

Assumption (H5) focuses on the behavior of H , which is sometimes referred to as the Hat
Matrix. It ensures that û converges to u in distribution as p → ∞ with the sample size increasing
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at an appropriate rate (Davidson and Mackinnon, 1993). Note that
∑n

i=1 hi = k. The average
size of the diagonal element of the hat matrix, then, is k/n. Assumption (H5) is not restrictive
and should be satisfied by design matrices associated with most real world applications unless
the sample contains some extreme outliers.

In Theorem 1, we show that GLS-AR estimators are asymptotically efficient as GLS esti-
mators, as both the number of AR lag, p, and the number of observations, n, increase together
so that p = o(n1/4) in the limit. In the next Section of Finite-sample Properties, we provide
practical guidelines of how to select p with given n in finite samples.
Theorem 1. Assume that (H1)–(H5) are satisfied. Let p be chosen as a function of n so that
p → ∞ and p = o(n1/4) as n → ∞. Then

nα/2(β̂FGLS-AR − β)
d→ N(0, A−1

0 ), (10)
where A−1

0 is the same as the variance of the GLS estimator.
We note that if σi,j = r|j−i| = 0 for |j − i| > p0 for some finite p0, then Theorem 1 remains

valid for any p � p0.
To prove Theorem 1 we must show that for any given vector τ ∈ Rk,

nα/2τ ′(β̂FGLS-AR − β)
d→ N(0, τ ′A−1

0 τ). (11)
Although we leave the details of the proof to the Appendix, there we show that by decom-

posing (β̂FGLS-AR − β) as the sum of three terms,
β̂FGLS-AR − β = (X′�̂−1

n X)−1X′�̂−1
n u

= (X′�−1
n X)−1X′�−1

n u

+ (
(X′�̂−1

n X)−1 − (X′�−1
n X)−1

)
X′�−1

n u

+ (X′�̂−1
n X)−1X′(�̂−1

n − �−1
n )u, (12)

we can evaluate each term separately as the residual autoregressive order p increases at an
appropriate rate dependent on sample size.

Thus, by denoting the three terms in (12) as Wn,1, Wn,2, and Wn,3, respectively, it will suffice
to show that:
Lemma 1. Under (H1)–(H5), we have

nα/2τ ′Wn,1
d→ N(0, τ ′A−1

0 τ). (13)
Lemma 2. Assume (H1)–(H4) are satisfied. If p → ∞ and p = o(n1/2), then

nα/2τ ′Wn,2
p→ 0. (14)

Lemma 3. Assume (H1)–(H4) are satisfied. If p → ∞ and p = o(n1/4), then

nα/2τ ′Wn,3
p→ 0. (15)

Lemma 1 corresponds to the case for which the covariance matrix �n is known. Lemmas 2
and 3 ensure that �̂n can be replaced by �n in (β̂FGLS-AR − β).

Although the basic idea of the method is simple, implementing it in the time domain is
a challenging task. The difficulty revolves in finding an efficient estimate for r̂j − E(r̂j ), which
depends both on the order of autoregression approximation and the dynamics of regressors.
In the Appendix we show how to overcome this problem by extending the classic results on
estimates of autocorrelation functions in pure time series settings (for example, results in Fuller,
1996) to regression settings.
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2.2 Testing Hypotheses of Regression Coefficients
The results from Theorem 1 can be used to construct an F -statistic

Fj,n−k = (Rβ̂FGLS − μ)′[R(X′�̂−1
n X)−1R′]−1(Rβ̂FGLS-AR − μ)/j

û′�̂−1
n û/(n − k)

, (16)

for testing j linear restrictions of the form

H0 : Rβ = μ, (17)

against the alternative
H1 : Rβ �= μ (18)

where R is a (j × k) matrix with each row representing a linear restriction on the coefficient
vector and μ is a (j × 1) vector.

In particular, when j = 1, the t-statistic

tn−k = nα/2(β̂FGLS-AR)i√
û′�̂−1

n û/(n − k)(X′�̂−1
n X/nα)−1

ii

(19)

can be used to test the null hypothesis βi = 0.
We note that the Fj,n−k test in (16) and the tn−k statistic in (19) are based on the asymptotic

results in Theorem 1. Similarly to the usual inference procedures based on feasible GLS or HAC
estimators, the exact distributions of these test statistics depend on the data and the parameters,
and do not, in general, follow F and t distributions in finite samples. They are viewed as large-
sample approximations whose quality improves as the sample size increases. In the finite-sample
simulations considered in the next section we will use the critical values from the F and the
standard normal distributions to approximate the true distributions of the test statistics Fj,n−k

and tn−k.

3 Finite-Sample Properties
In this section we provide the results from an extensive Monte Carlo study contrasting the
empirical sizes and power of test statistics based on OLS, feasible GLS, feasible GLS-AR, and
HAC estimators.

3.1 The Simulation Designs
In the previous section we have shown that if p is chosen to be sufficiently large, the errors
introduced by using the FGLS-AR(p) and the estimated covariance matrix have no impact on
the limiting distribution of the regression estimates nor their corresponding test statistics. In
this section we will present results from an exhaustive Monte Carlo study contrasting the finite
sample performance of several estimators. We will compare the resulting empirical sizes and the
power of tests based on the t-statistics of regression coefficients obtained from various estima-
tion procedures to their nominal sizes of 1% and 5%. This latter approach involves obtaining
consistent standard errors for the OLS estimates of the regression (Newey and West, 1987). This
is accomplished through the weighted estimator of X′�nX, i.e., the Bartlett kernel, w(·),

	̂ = n−1
n∑

t=1,s=1,|t−s|�L

w(t − s)ût ûsX[t, .]′X[s, .], (20)
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where ût = yt − X[t, .]β̂OLS, and L is an arbitrarily selected truncation value for which the
magnitude of the cov(ut , us) is assumed to be inconsequential (Mittelhammer et al., 2000).
While appealing in terms of their asymptotic properties, the finite sample performances of the
inference procedures based on HAC are known to be unreliable, especially when there is strong
autocorrelation in the data (e.g., Kiefer and Vogelsang, 2005). Although there have been some
more recent developments that attempt to address the size distortion problem in finite samples
(e.g., Kiefer and Vogelsang, 2002; PC Sun P Y and Jin, 2011; Politis, 2011), those new procedures
are complicated and not readily available in statistical packages. Due to its popularity in the
empirical research, we only contrast the original version of HAC (by Newey and West, 1987)
with our approach.

We generated, for sample sizes ranging from 50 to 1,000 observations, 1,000 realizations for
each of a variety of stationary and invertible Gaussian ARMA structures with varying parameter
values as the residuals of a regression model with one exogenous variable generated by an AR(1)
process. The parameter values for the residual ARMA structures were chosen to not only conform
with other previously published studies such as Engle (1974), Pukkila et al. (1990), and Zinde-
Walsh and Galberaith (1991), but also to provide a representative set of examples of possible
autocorrelated error structures in regression models. Then, we created the regression model

yt = 2.0 + 0.5xt + ut , (21)

where ut follows various ARMA(p, q) series and the generating process for the exogenous variable
xt followed an AR(1) process, (1 − ζB)xt = wt , with wt ∼ IN(0, σ 2), and E(ut , ws) = 0, for all
t and s, and ζ = {−0.5, 0.0, 0.5}. Only one set of random numbers was generated for each of
the AR(1) model structures of the exogenous variable used in (21). Breusch (1980) has shown
that for a fixed regressor the distribution of (β̂FGLS − β)/σ does not depend on β and σ 2. In
addition, the result also holds if the covariance matrix is misspecified (Koreisha and Fang, 2001).
This implies that in simulation studies, only one point in the parameter space (β, σ 2) needs to
be considered for feasible GLS and GLS-AR estimators. We let σ = 1 in our simulations.
For the HAC approach, Newey and West (1987) recommended setting the truncation value
at LNW = 4(n/100)2/9 while others such Stock and Watson (2003) and Kiefer and Vogelsang
(2005) have suggested using LSW = 0.75n1/3. For sample sizes considered in this study the two
truncation rules differ only for sample sizes of 200 and 1,000 observations. Since there are no
substantial differences in empirical sizes for n = 1,000, we will only report empirical size values
based on both LNW and LSW for the sample size of 200.

For the approach based on AR(p) corrections, we found that β̂FGLS−AR has the best perfor-
mance when p is set near 4n1/6 or 2n1/4. For the sake of brevity, since for sample sizes considered
here the integer difference between 4n1/6 and 2n1/4 is typically just 1, we will only report empirical
sizes for just one value for p, denoted as p̃.

3.2 Empirical Sizes of Tests (Nominal Size 5%)

Figure 1 contains the empirical sizes of the t-statistics for the regression coefficient β1 obtained
from feasible GLS-AR procedures for selected ARMA(p, q) residual autocorrelation structures
for wide range of sample of sizes. Table 1 provides the comparisons of the empirical sizes of OLS,
HAC, feasible GLS, and feasible GLS-AR procedures. Again, for the sake of brevity and to avoid
a great deal of repetitiveness, the figure and table do not include all permutations of residual
serial correlation and nominal sizes. We have also omitted the results of the simulations for β0
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Figure 1: Empirical size of the t-statistics for β1 based on GLS-AR(p) estimator for a variety of
serial correlations and sample sizes. Nominal size is 5%. ζ is the AR coefficient associated with
the generating process for the exogenous variable xt . The plots in the left, the middle, and the
right columns are results based on ζ = −0.5, 0.0, and 0.5, respectively. Legend: solid line for
n = 50; dashed line for n = 100; dotted line for n = 200; and dashed/dotted line for n = 500.
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Table 1: Empirical size of the t-statistic for β1 based on different estimators for a variety of serial
correlations (nominal size 5%).

ζ = −0.5a ζ = 0.0a ζ = 0.5a

Estimatorsb Estimatorsb Estimatorsb

FGLS- FGLS- FGLS- FGLS- FGLS- FGLS-
n OLS FGLS HAC AR(1) AR(p̃) OLS FGLS HAC AR(1) AR(p̃) OLS FGLS HAC AR(1) AR(p̃)

Residual Serial Correlation: AR(1) φ1 = 0.5

50 1.0 4.7 9.7 4.7 5.6 4.8 5.5 11.6 5.5 6.8 11.3 6.0 14.2 6.0 6.5
100 0.8 4.8 9.1 4.8 5.8 4.3 5.4 8.9 5.4 6.4 11.7 4.2 12.3 4.2 5.4
200 1.1 4.9 8.4 4.9 6.2 5.2 5.1 8.7 5.1 6.2 13.1 5.3 10.9 5.3 6.4
500 1.4 5.2 7.0 5.2 5.5 6.4 5.3 8.2 5.3 5.8 13.4 5.5 8.5 5.5 6.2

1000 1.5 5.3 6.6 5.2 5.1 6.5 5.2 7.2 5.3 5.3 13.3 5.1 6.8 5.6 5.4

Residual Serial Correlation: MA(1) θ1 = 0.5

50 9.0 8.9 12.2 5.2 6.9 4.2 9.9 10.1 3.3 5.8 1.2 14.3 8.0 2.2 7.0
100 10.7 6.0 12.1 5.7 5.6 5.7 6.7 10.1 5.0 5.9 1.5 7.1 8.9 2.4 6.2
200 11.7 5.7 10.9 6.1 6.5 5.5 5.6 8.2 3.5 5.7 1.2 6.9 6.7 2.2 6.7
500 9.6 5.3 7.6 5.5 6.7 5.5 5.3 7.7 4.0 5.6 1.1 5.6 7.1 2.5 5.3

1000 10.2 5.2 6.7 5.5 5.4 5.3 5.1 6.2 4.7 5.2 1.5 5.5 6.1 3.1 5.0

Residual Serial Correlation: ARMA(1,1) φ1 = 0.8; θ1 = 0.5

50 2.6 6.8 11.2 6.3 6.3 5.3 6.5 12.1 6.6 7.3 10.3 6.5 15.6 6.3 6.8
100 1.9 6.3 9.8 6.5 6.2 4.2 5.9 9.5 5.5 5.4 10.5 4.5 11.7 5.4 4.7
200 2.1 5.8 9.3 6.4 6.5 5.8 5.7 9.8 5.4 6.4 13.1 5.2 11.8 5.5 6.2
500 2.7 5.5 7.3 6.2 5.8 5.7 5.6 8.0 5.6 5.6 12.9 5.4 8.9 6.0 6.2

1000 3.0 5.2 6.2 5.8 5.3 5.5 5.2 7.2 5.1 4.9 12.2 4.8 6.7 5.3 5.4

Residual Serial Correlation: ARMA(1,1) φ1 = 0.8; θ1 = −0.7

50 0.4 14.6 5.5 0.2 3.3 4.3 13.1 10.8 1.1 3.6 19.5 13.4 16.3 3.4 4.3
100 0.2 9.4 7.9 0.1 3.7 4.3 8.6 10.8 0.7 4.6 19.8 8.6 13.5 3.0 4.4
200 0.1 6.1 7.2 0.2 4.6 5.4 7.7 9.8 1.0 5.8 21.7 7.2 11.5 3.6 5.9
500 0.3 5.3 7.3 0.6 5.0 5.5 4.8 8.3 1.7 5.7 20.7 6.1 8.5 4.2 5.6

1000 0.8 5.3 7.1 1.1 4.8 5.4 4.7 7.0 2.1 5.1 19.0 5.8 7.2 4.5 5.5

Residual Serial Correlation: ARMA(1,2) φ1 = −0.8; θ1 = 1.4, θ2 = −0.6

50 21.4 14.3 15.3 3.0 3.4 4.9 13.8 9.4 0.8 3.5 0.2 15.9 5.4 0.0 3.4
100 22.2 10.9 14.6 3.7 3.6 6.2 12.6 11.2 1.4 4.2 0.3 13.8 7.9 0.1 3.0
200 21.4 9.1 11.6 3.4 5.0 6.8 9.3 9.5 1.1 4.4 0.1 9.4 7.6 0.2 3.9
500 20.2 6.1 7.8 3.3 5.1 5.5 5.7 6.9 1.0 5.0 0.2 5.9 5.6 0.7 5.9

1000 19.8 5.4 7.9 3.5 4.6 5.8 5.5 6.1 1.7 4.9 0.8 5.4 5.5 1.8 5.6

Residual Serial Correlation: ARMA(2,1) φ1 = 1.4, φ2 = −0.6; θ1 = −0.8

50 0.4 14.6 5.4 0.0 2.7 4.3 13.2 10.7 0.9 3.6 19.6 12.5 16.5 3.1 3.7
100 0.1 11.6 7.8 0.1 3.2 4.5 12.5 10.6 0.5 3.9 20.2 12.0 13.7 2.8 3.9
200 0.0 7.0 7.4 0.0 4.1 5.4 7.8 9.7 1.1 4.7 21.6 8.6 11.6 3.7 5.1
500 0.2 5.4 7.4 0.5 4.9 5.7 5.5 8.1 1.4 4.9 21.0 5.5 8.6 4.1 5.3

1000 0.8 5.0 5.8 1.1 4.9 5.5 5.4 7.0 2.7 5.1 20.8 5.4 8.5 4.3 5.2
a. ζ=AR coefficient associated the generating process for the exogenous variable xt .

b. Estimators: OLS=Ordinary Least Squares; AR(1)=Estimated Generalized Least Squares
Estimator with AR(1) Correction for the Residual Serial Correlation; HAC=Heteroscedasticity
and Autocorrelation Consistent Estimator (Truncation Rule LNW(LSW); for n = 200, LNW = 5
(LSW = 4)); FGLS=Feasible Generalized Least Squares Estimator with the Corrected Residual
Autocorrelation Structure; AR(p̃)=Feasible Generalized Least Squares Estimator with AR(p̃)

Correction for the Residual Serial Correlation (p̃ = [2n1/4]).
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because they are similar to what we observed for β1. These supplementary simulation results
are available from the authors upon request.

Figure 1 shows the empirical size of the tests based on t-ratios derived from estimates of the
regression coefficient β1 and its corresponding standard error when the nominal size was set at
5% using the feasible GLS-AR(p) procedure. Each graph in this figure summarizes the results
associated with 48,000 trials. As can be seen when p = p̃ the empirical sizes were generally close
to the specified significance levels (results for 1% can be obtained from the authors) regardless
of sample size or stochastic nature of X. Even for serial correlation structures that would clearly
benefit from applying a lower AR order such as the AR(1) parametrization or the nearly white
noise ARMA(1,1) parametrization with φ1 = 0.8 and θ1 = 0.5, the differences in empirical sizes
obtained from lower AR orders were not very large. However, for other parametrizations setting
the order of the autoregressive correction either too low or too high (relative to p̃) can lead to
substantial under or over rejection of the null hypothesis that β1 = 0. Using a feasible GLS-AR(1)
correction, for instance, as is so frequently done in practice, can severely under estimate the size
of the test. For example, for the ARMA (1,1) residual structure with φ1 = 0.8 and θ1 = −0.7,
and for the ARMA(1,2) parametrization, φ1 = −0.8; θ1 = 1.4, θ2 = −0.6, such a correction
would reject the null hypothesis well below the nominal 5% regardless of the stochastic nature
of the exogenous variable or the sample size. Too large an order for the AR correction, on the
other hand, can result in over-rejecting the null hypothesis. For the MA(1) parametrization
with θ1 = 0.5 with sample size of 100 observations, for example, when p is set at 10, the null
hypothesis is rejected between 7.6% and 9.7% of the time depending on the stochastic nature of
the exogenous variable. As one would expect, however, as the sample size increases the variation
in the empirical size of the tests is not as pronounced as p increases, i. e., the slopes of the lines
tend to flatten out approaching the nominal size.

Table 1 contrasts the empirical size of the t statistic associated with the regression coefficient
β1 among the different procedures. As noted earlier for sample sizes typically available to model
builders the feasible GLS-AR procedure yields empirical sizes that are close to their nominal
sizes. The empirical sizes based on feasible GLS are generally higher (often considerably higher)
than the nominal size of the test (5% reported here), and dependent on the structure of the serial
correlation. The percentage of the time the null is over-rejected, however, decreases as the sample
size increases. For the ARMA(2,1) parametrization with φ1 = 1.4, φ2 = −0.6; θ1 = −0.8, for
instance, the ranges for the empirical sizes associated with samples from 50 to 1,000 observations
were between 14.6% and 5.0%, 13.2% and 5.4%, and 12.5% to 5.4%, for ζ = {−0.5, 0.0, 0.5},
respectively, whereas for the AR(1) parametrization with φ1 = 0.5 and for the processes relative
close to being white noise such as the ARMA(1,1) parametrization φ1 = 0.8 and θ1 = 0.5 the
variations in the empirical sizes were much smaller and closer to their nominal sizes. These
observations regarding the tendency of GLS estimators to over-reject the null hypothesis are
in line with previous findings that show that although the parameter estimates obtained from
feasible GLS for such sample sizes are efficient in terms of mean square error (Koreisha and Fang,
2001), their corresponding standard errors can be seriously underestimated (Kennedy, 1988).
As sample sizes increase the empirical sizes approach their nominal sizes. For the ARMA(2,1)
parametrization just discussed, for instance, the empirical sizes (averaged across ζ ) go down to
5.5% for n = 500 and 5.3% for n = 1000. The results show that although GLS is asymptotically
efficient, it requires relatively large samples (e.g., n � 500) for the t statistic based on it to
converge to a Gaussian distribution.

As expected, since HAC estimates are known to be downward biased in finite samples
(Kiefer et al., 2000; and Kiefer and Vogelsang, 2005), the HAC procedure tended to over-reject
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the null hypothesis. As can be seen the resulting empirical sizes were substantially higher than
their nominal sizes (particularly for samples sizes less than or equal to 100 observations), and
very dependent on the structure of the serial correlation as well as the stochastic nature of the
exogenous variable. With few exceptions the degree of over-rejection decreased as the sample
size increased. For the AR(1) parametrization with φ1 = 0.5, for example, the ranges for the
empirical sizes associated with samples from 50 to 1,000 observations were between 9.7% and
6.6%, 11.6% and 7.2%, and 14.2% and 6.8%, for ζ = {−0.5, 0.0, 0.5}, respectively, whereas for
the ARMA(1,2) parametrization with φ1 = −0.8; θ1 = 1.4, θ2 = −0.6, the corresponding ranges
were from 15.3% to 7.8%, 9.4% to 6.1%, and 5.4% to 5.5%, respectively. For sample sizes of 200
observations the LSW truncation rule appeared to be marginally better than the LMW rule.

The variation in the size of the test based on OLS was much greater than the other pro-
cedures, and very dependent on the stochastic nature of X. When ζ = 0.0, i.e., when X was
generated as an independently, identically distributed (i.i.d.) random variable, the empirical size
of OLS t-tests were near the nominal size, but when X was stochastic, i.e., when ζ = {−0.5, 0.5}
the empirical size of the tests varied considerably from their nominal sizes with no evident dis-
cernable pattern leading to over or under rejection of the null hypothesis. For example, for the
ARMA(1,1) parametrization with φ1 = 0.8 and θ1 = −0.7, the empirical size of the OLS test
oscillated in the range from less than 1% to 21% while for the ARMA(1,2) parametrization with
φ1 = −0.8; θ1 = 1.4, θ2 = −0.6 the oscillation was in the reverse direction from approximately
22% to less than 1% for ζ = {−0.5, 0.5}, respectively. Further increases in the sample size did
not appear to impact the variation of the empirical sizes of OLS tests. This very interesting
finding regarding the impact that the stochastic nature of the exogenous variable has on the
size of the test may shed some light on why authors such as Judge et al. (1985) and Choudhury
et al. (1999) may have admonished practitioners that “OLS may often be better than assuming
another incorrect truncation of the actual process.” Increasing the lag length of the autoregres-
sive correction, as we have already observed results in more efficient parameter estimates as well
as standard errors.

A more detailed explanation why the variation in the size of the test for β1 based on OLS
is dependent on the stochastic nature of X can be obtained from the authors upon request.
For a single regressors case, if the residual follows an AR(1) process with autocorrelation ρ, for
example, it is easy to show that the variance of the OLS estimate for β1 is under-estimated (over-
estimated) when ρ and ζ have the same (opposite) sign, and that the order of the magnitude of
the bias can be considerable.

3.3 Empirical Power of Tests (Nominal Size 1%)

Table 2 contains results associated with the power of the tests with nominal size of 1% for
the regression coefficient β1, obtained from OLS, HAC, feasible GLS, and feasible GLS-AR
procedures. From Table 2 we see that although the power of the tests for β1 based on all
procedures improved as sample size increased, for some serial correlation structures, power of
the OLS and HAC tests (unlike those of feasible GLS and feasible GLS-AR) did not reach 100%
even for relatively large sample sizes (e.g., n � 500). The power of the tests based on feasible GLS
and feasible GLS-AR(p) with p = p̃ was typically substantially higher than that of the OLS or
HAC tests regardless of sample size or stochastic nature of the exogenous variable. For sample
sizes greater than or equal to 100 observations the power of feasible GLS and feasible GLS-AR
(even though not shown here, also for other order p) nearly always approached 100% (ranging
typically from 96% to 100%), whereas the ranges for the power of the OLS and HAC tests were
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Table 2: Empirical power of the t-statistic for β1 based on different estimators for a variety of
serial correlations (nominal size 1%).

ζ = −0.5a ζ = 0.0a ζ = 0.5a

Estimatorsb Estimatorsb Estimatorsb

FGLS- FGLS- FGLS- FGLS- FGLS- FGLS-
n OLS FGLS HAC AR(1) AR(p̃) OLS FGLS HAC AR(1) AR(p̃) OLS FGLS HAC AR(1) AR(p̃)

Residual Serial Correlation: AR(1) φ1 = 0.5

50 81.5 98.2 93.2 97.9 96.3 63.9 86.6 73.8 84.1 82.9 72.0 75.7 69.4 75.7 74.3
100 99.4 99.9 100.0 99.9 100.0 95.1 99.5 94.8 99.5 99.1 96.5 97.9 91.2 97.9 97.8
200 100.0 100.0 100.0 100.0 100.0 99.9 100.0 99.9 100.0 100.0 100.0 100.0 100.0 99.9 99.9
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Residual Serial Correlation: MA(1) θ1 = 0.5

50 75.1 81.6 73.6 72.8 75.9 64.4 87.4 72.1 78.4 82.6 79.1 98.4 91.6 94.8 97.2
100 97.0 99.2 95.2 97.5 98.5 95.3 99.8 96.1 99.2 99.7 99.7 100.0 99.7 100.0 100.0
200 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Residual Serial Correlation: ARMA(1,1) φ1 = 0.8; θ1 = 0.5

50 84.6 93.2 91.7 94.7 92.2 70.3 80.9 77.0 80.2 78.3 75.3 78.9 75.3 75.8 76.5
100 99.4 98.9 99.7 99.9 99.8 95.7 98.4 96.4 98.9 98.1 96.8 98.7 94.1 98.3 98.3
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 99.6 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 99.6 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 99.6 100.0 100.0

Residual Serial Correlation: ARMA(1,1) φ1 = 0.8; θ1 = −0.7

50 11.6 100.0 60.6 99.2 100.0 14.0 99.7 30.0 88.1 99.5 29.3 98.2 26.2 65.6 95.7
100 34.1 100.0 84.6 100.0 100.0 29.3 100.0 44.2 99.8 100.0 43.2 99.9 31.3 96.2 99.9
200 78.9 100.0 97.8 100.0 100.0 56.0 100.0 65.6 100.0 100.0 65.1 100.0 45.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 93.4 100.0 93.3 100.0 100.0 92.3 100.0 76.5 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 91.7 100.0 100.0

Residual Serial Correlation: ARMA(1,2) φ1 = −0.8; θ1 = 1.4, θ2 = −0.6

50 24.2 96.0 16.4 61.7 94.7 9.1 99.9 19.9 83.4 99.3 4.9 100.0 44.9 99.1 100.0
100 37.8 99.7 24.5 95.5 100.0 21.3 100.0 33.0 99.4 100.0 21.8 100.0 75.5 100.0 100.0
200 57.9 100.0 35.2 100.0 100.0 48.0 100.0 56.0 100.0 100.0 67.3 100.0 94.9 100.0 100.0
500 88.9 100.0 68.3 100.0 100.0 90.4 100.0 90.2 100.0 100.0 99.6 100.0 100.0 100.0 100.0

1000 97.9 100.0 87.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Residual Serial Correlation: ARMA(2,1) φ1 = 1.4, φ2 = −0.6; θ1 = −0.8

50 8.2 99.7 56.8 98.7 100.0 12.6 99.5 26.0 85.2 100.0 27.8 98.6 24.9 61.0 96.0
100 27.7 99.9 81.4 100.0 100.0 25.7 100.0 40.0 99.6 100.0 40.7 100.0 28.6 95.3 100.0
200 71.3 100.0 97.1 100.0 100.0 51.2 100.0 61.5 100.0 100.0 61.4 100.0 40.1 100.0 100.0
500 99.8 100.0 100.0 100.0 100.0 91.3 100.0 91.1 100.0 100.0 90.2 100.0 70.6 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.6 100.0 100.0

a. ζ=AR coefficient associated the generating process for the exogenous variable xt .
b. Estimators: OLS=Ordinary Least Squares; AR(1)=Estimated Generalized Least Squares

Estimator with AR(1) Correction for the Residual Serial Correlation; HAC=Heteroscedasticity
and Autocorrelation Consistent Estimator (Truncation Rule LNW(LSW); for n = 200, LNW = 5
(LSW = 4)); FGLS=Feasible Generalized Least Squares Estimator with the Corrected Residual
Autocorrelation Structure; AR(p̃)=Feasible Generalized Least Squares Estimator with AR(p̃)

Correction for the Residual Serial Correlation (p̃ = [2n1/4]).
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much broader. For instance, across serial correlation structures, for n = 200 observations power
based on OLS ranged from 34% to 100% (when ζ = −0.5), 54% to 100% (when ζ = 0.0), and
61% to 100% (when ζ = 0.5). The corresponding ranges for HAC were 58% to 100% (when
ζ = −0.5), 48% to 100% (when ζ = 0.0), and 39% to 100% (when ζ = 0.5). (The ranges for
OLS and HAC were much wider when n = 100.)

As would be expected, for sample sizes of 50 observations power levels associated with β1

were lower for all procedures. For feasible GLS and feasible GLS-AR (with p̃ = 4) power levels
across all serial correlation structures and ζ were not less than 74%. (For serial correlation
structures that were significantly different from white noise the range is much closer to 95% to
100%, but somewhat dependent on the stochastic nature of X.)

For this sample size, variation in power levels based on the feasible GLS-AR(1) correction
was more pronounced than with feasible GLS and feasible GLS-AR(4). For some parametriza-
tions power levels based on AR(1) corrections were as low as 61%.

It should also be noted that even for the AR(1) and the nearly white noise ARMA(1,1)
(φ1 = 0.8 and θ1 = 0.5) serial correlation structures, for which setting a low order autoregressive
correction would be more appropriate, the difference in power levels between a feasible GLS-
AR(1) and a feasible GLS-AR(4) correction was inconsequential (2%).

For OLS and HAC, power levels manifested a greater dependency on the stochastic nature
of X and on the form of the serial correlation than observed for larger sample sizes. Moreover,
their magnitudes were generally much lower than those of feasible GLS and feasible GLS-AR(p)
with p = p̃. Across serial correlation structures, for n = 50 observations, power based on OLS
ranged from 8% to 84% (when ζ = −0.5), 78% to 84% (when ζ = 0.0), and 61% to 95% (when
ζ = 0.5). The corresponding ranges for HAC were 16% to 93% (when ζ = −0.5), 20% to 77%
(when ζ = 0.0), and 25% to 92% (when ζ = 0.5).

Note that caution is needed as we look at power since some tests do not maintain their
sizes. Nevertheless, these power results combined with our observations regarding the size of
the tests indicate that for finite samples, inferences based on tests generated from the feasible
GLS-AR correction are more robust than from feasible GLS, HAC, or OLS. Furthermore, they
cast serious doubts on the reliability of inferences based on generic, multipurpose procedures
such as feasible GLS-AR(1) and HAC. We also conduct a joint test of significance. The results
are available at Online Supplement.

4 Empirical Application: An Analysis of Global Temperature
Trends

The issue of global warming has received considerable attention over the past two decades. In
this section we apply our tests to examine whether the observed changes in temperature are due
to natural variability or if we are witnessing an upward trend which is statistically significant.

The data analyzed in this paper (displayed in Figure 2) are the annual global temperature
anomaly time series, which incorporate land and marine data, from 1850 to 2012. The original
series were constructed by Jones et al. (1986), and have been continually updated and expanded
by P. Jones of the Climatic Research Unit at the University of East Anglia, UK. The series are
relative to the 1961–1990 means, measured in degrees Celsius. They have been analyzed over
different spans of time by several researchers including Bloomfield and Nychka (1992), Wu et al.
(2001), and Fomby and Vogelsang (2002).
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Figure 2: Annual global temperature anomalies from 1850 to 2012 relative to 1961–1990 means
and measured in degrees Celsius.
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Figure 2: (Continued.)

Table 3: Analysis results of the t-statistic for β1 (10−3) and standard error (10−3). Based on
different estimators for the global temperature series (1850–1945).

Estimate Standard Error t-value p-value

OLS 2.32 0.46 5.05 < 0.0001
HAC 2.32 0.81 2.86 0.0051
FGLS-AR(1) 2.32 1.10 2.11 0.0352
FGLS-AR(5) 2.21 1.37 1.61 0.1081
FGLS-ARMA(1,2) 2.25 1.35 1.66 0.0967

We will begin by first analyzing the first one-hundred years of the annual global temperature
anomalies to illustrate how important it is to account for serial correlation in regression models.
Following Bloomfield and Nychka (1992) we consider the deterministic trend model with a
stationary error:

yt = β0 + β1t + ut ,

where yt is the temperature and t is the year. The error ut was identified as an ARMA(1,2)
process based on the Minimum Information Criterion (MINIC) method (Hannan and Rissanen,
1982). Table 3 contains the estimates for β1 based on OLS, HAC, feasible GLS-AR(1), feasible
GLS-AR(p) (where p = √

100/2 = 5), and feasible GLS-ARMA(1,2) estimators.
As can be seen, although the coefficient estimates are very similar across all methods, the

|t | values for significance of β1 are drastically different across estimation approaches. Tests based
on OLS and HAC estimators are statistically significant at 99% level; the test based on FGLS-
AR(1) estimator is statistically significant at 95% but not at the 99% level, and tests based on
FGLS-AR(5) and FGLS-ARMA(1,2) estimators are statistically significant only at round 90%
level, i.e., suggesting that β1 is insignificant.
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Although the OLS estimator is supposedly efficient for this deterministic trend model, tests
of significance depend entirely on how the estimate for the error variance is calculated which in
this case was severely underestimated. To see this more clearly, let us write the variance of β̂1

based on the OLS estimator in terms of autocorrelations of the error,

var(β̂OLS
1 ) = γ0 + 2

∑n−1
h=1 U(h)γh

n
, (22)

where U(h) = ∑n−h
t=1 (t + h − t̄ )(t − t̄ )/

∑n
t=1(t − t̄ )2 (Lee and Lund, 2004). Since the variance of

β1 based on OLS estimator ignores the term 2
∑n−1

h=1 U(h)γh, which, in our case, is significant
and positive, var(β̂1) is underestimated; hence, the test based on OLS over-rejects the null. It
is interesting to see that although the test statistic based on HAC or FGLS-AR(1) estimator
reduces the frequency of over-rejection, they still underestimate the variance of ut by quite a
bit; thus, one should interpret the evidence based on HAC or FGLS-AR(1) estimators with
caution. The results based on either FGLS-AR(5) (or FGLS-ARMA(1,2)) estimator are more
robust because the tests take into account more fully the residual autocorrelation. It is also worth
noting that estimation of the model using our proposed approach did not require identification
of the residual serial correlation structure.

We will now analyze the full data set (1850–2012). A quick glance at Figure 2 suggests that
a structural break in the deterministic trend occurred around the first decade of the twentieth
century, and the possibility of a shift in the trend function. We will, thus, fit the following model
to the data,

yt = β0 + β1t + β2Dt + β3Lt + ut , (23)

where TB is the structural breaking points and the level dummy variable Dt = 1, if t > TB , zero
otherwise; and Lt indicates potential shift in the trend function defined as: Lt = (t −TB)Dt , and
test the hypotheses that β1 = 0 and/or β3 = 0. Using the FGLS-AR(6) estimator both Akaike
information criterion (AIC) and Bayesian information criterion (BIC) identified 1911 as the year
when the structural break in the trend occurred.

From Table 4 which contains the tests of significance for both β1 and β3 based on different
estimators we do not find any evidence of a warming trend prior to 1911, but that there is a
significant upward trend subsequently. The average increase in global temperature after 1911
appears to be about 0.9 degrees Celsius. It is also interesting to note that for the period before
1911 both OLS and HAC erroneously identified a statistically significant downward trend in
temperatures at 99% and 95% level, respectively.

This global warming example clearly highlights the importance of accounting for the serial
correlation in the error structure of regression models, and demonstrates the simplicity and
power of our proposed approach.

5 Conclusions
In this article we have shown that the generalized least squares estimator based on autoregressive
corrections (GLS-AR) has the same limiting distribution as GLS, and that parameter inferences
on the regression coefficients can be conducted using the usual t and F distributions. Our novel
derivations of asymptotic normality in the time domain extend the works of many others in
pure time series settings in the frequency domain to time series regression models under very
general structures of design matrices. Moreover, based on a large Monte Carlo study we have
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Table 4: Analysis results of the t-statistic for β1 (10−3), β3 (10−3) and standard error (10−3).
Based on different estimators for the global temperature series (1850–2012).

Case for β1 Estimate Standard Error t-value p-value

OLS −1.68 0.63 −2.67 0.0084
HAC −1.68 0.86 −1.96 0.0523
FGLS-AR(1) −1.51 1.29 −1.17 0.2409
FGLS-AR(6) −1.58 1.73 −0.91 0.3610

Case for β3 Estimate Standard Error t-value p-value

OLS 9.16 0.88 10.45 < 0.0001
HAC 9.16 1.27 7.22 < 0.0001
FGLS-AR(1) 9.01 1.80 5.01 < 0.0001
FGLS-AR(6) 9.26 2.44 3.80 0.0001

also demonstrated that for finite samples the GLS-AR(p) procedure with p set at or near [n1/2]
or [2n1/4] yields more robust estimators in terms of size and power than OLS, HAC or EGLS.
Thus, model builders upon detecting serial correlation in the residuals generated from an OLS
regression should simply re-estimate the regression equation using GLS with an AR correction
since there is not much to be gained by identifying the form of the residual serial correlation.
Automatic procedures for performing this estimation without even providing initial estimates
for the autoregressive coefficients can be found in most widely used statistical packages such as
SAS (Autoreg), Splus (ARIMA), and SPSS (ARIMA).

One possible extension is to use the framework employed here to the nonlinear regression
model with correlated errors. The methods in technical proofs might prove valuable.

Supplementary Material
Online Supplements.
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