Journal of Data Science logo


Login Register

  1. Home
  2. Issues
  3. Volume 19, Issue 3 (2021)
  4. Shape-Restricted Regression Splines with ...

Journal of Data Science

Submit your article Information
  • Article info
  • More
    Article info

Shape-Restricted Regression Splines with R Package splines2
Volume 19, Issue 3 (2021), pp. 498–517
Wenjie Wang ORCID icon link to view author Wenjie Wang details   Jun Yan ORCID icon link to view author Jun Yan details  

Authors

 
Placeholder
https://doi.org/10.6339/21-JDS1020
Pub. online: 12 August 2021      Type: Computing In Data Science     

Received
20 July 2021
Accepted
20 July 2021
Published
12 August 2021

Abstract

Splines are important tools for the flexible modeling of curves and surfaces in regression analyses. Functions for constructing spline basis functions are available in R through the base package splines. When the curves to be modeled have known characteristics in monotonicity or curvature, more efficient statistical inferences are possible with shape-restricted splines. Such splines, however, are not available in the R package splines. The package splines2 provides easy-to-use shape-restricted spline basis functions, along with their derivatives and integrals which are important tools in many inference scenarios. It also provides additional splines and features that are not available in the splines package, such as periodic splines and generalized Bernstein polynomials. The usages of the functions are illustrated with shape-restricted regression, recurrent event data analysis, and extreme-value copulas.

Supplementary material

 Supplementary Material
We review the generalized Bernstein polynomials, B-splines, and Natural cubic splines implemented in the package splines2 but not covered in the main text. We also provide the R code that produced the micro-benchmark results.

References

 
Chen F (2018). ibs: Integral of B-Spline Functions. R package version 1.4.
 
Cormier E, Genest C, Nešlehová JG (2014). Using B-splines for nonparametric inference on bivariate extreme-value copulas. Extremes, 17(4): 633–659.
 
Curry HB, Schoenberg IJ (1966). On Pólya frequency functions IV: The fundamental spline functions and their limits. Journal d’Analyse Mathématique, 17(1): 71–107.
 
De Boor C (1978). A Practical Guide to Splines, volume 27. Springer-Verlag, New York.
 
Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer.
 
Eddelbuettel D, Sanderson C (2014). RcppArmadillo: Accelerating R with high-performance C++ linear algebra. Computational Statistics and Data Analysis, 71: 1054–1063.
 
Eilers PHC, Marx BD (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11(2): 89–102.
 
Farin G, Hansford D (2000). The Essentials of CAGD. CRC Press.
 
Fu H, Luo J, Qu Y (2016). Hypoglycemic events analysis via recurrent time-to-event (HEART) models. Journal of Biopharmaceutical Statistics, 26(2): 280–298.
 
Hofert M, Kojadinovic I, Maechler M, Yan J (2020). copula: Multivariate Dependence with Copulas. R package version 1.0-1.
 
Hofert M, Kojadinovic I, Mächler M, Yan J (2018). Elements of Copula Modeling with R. Springer.
 
Khoudraji A (1995). Contributions à l’étude des copules et à la modélisation de valeurs extrêmes bivariées, Ph.D. thesis, Université Laval, Québec, Canada.
 
Koenker R, Ng P, Portnoy S (1994). Quantile smoothing splines. Biometrika, 81(4): 673–680.
 
Mersmann O (2019). microbenchmark: Accurate Timing Functions. R package version 1.4-7.
 
Meyer MC (2008). Inference using shape-restricted regression splines. The Annals of Applied Statistics, 2(3): 1013–1033.
 
Mogstad M, Santos A, Torgovitsky A (2018). Using instrumental variables for inference about policy relevant treatment parameters. Econometrica, 86(5): 1589–1619.
 
Ng P, Maechler M (2007). A fast and efficient implementation of qualitatively constrained quantile smoothing splines. Statistical Modelling, 7(4): 315–328.
 
Ng PT, Maechler M (2020). COBS – Constrained B-Splines (Sparse Matrix Based). R package version 1.3-4.
 
Perperoglou A, Sauerbrei W, Abrahamowicz M, Schmid M (2019). A review of spline function procedures in R. BMC Medical Research Methodology, 19(1): 46.
 
Pickands J (1981). Multivariate extreme value distribution (with discussion). In: Proceedings 43th, Session of International Statistical Institution, volume 2, 859–878, 894–902. Buenos Aires.
 
Piegl L, Tiller W (1997). The NURBS Book. Springer Science & Business Media, 2 edition.
 
Prautzsch H, Boehm W, Paluszny M (2002). Bézier and B-Spline Techniques. Springer Science & Business Media.
 
R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
 
Ramsay JO (1988). Monotone regression splines in action. Statistical Science, 3(4): 425–441.
 
Redd A (2015). orthogonalsplinebasis: Orthogonal B-Spline Basis Functions. R package version 0.1.6.
 
Rosenberg PS (1995). Hazard function estimation using B-splines. Biometrics, 51(3): 874–887.
 
Ruppert D, Wand MP, Carroll RJ (2003). Semiparametric Regression. 12. Cambridge University Press.
 
Schumaker L (2007). Spline Functions: Basic Theory. Cambridge University Press. 3 edition.
 
Shea J, Torgovitsky A (2020). ivmte: An R Package for Implementing Marginal Treatment Effect Methods. University of Chicago. Becker Friedman Institute for Economics. Working Paper (2020-01).
 
Turlach BA, Weingessel A (2019). quadprog: Functions to Solve Quadratic Programming Problems. R package version 1.5-8.
 
Wand M (2018). SemiPar: Semiparametic Regression. R package version 1.0-4.2.
 
Wang J, Ghosh SK (2012). Shape restricted nonparametric regression with Bernstein polynomials. Computational Statistics & Data Analysis, 56(9): 2729–2741.
 
Wang S (2013). pbs: Periodic B-Splines. R package version 1.1.
 
Wang W, Fu H, Yan J (2020). reda: Recurrent Event Data Analysis. R package version 0.5.2.

PDF XML
PDF XML

Copyright
© 2021 The Author(s)
This is a free to read article.

Keywords
Cox–de Boor algorithm derivatives integrals monotone regression periodic splines

Metrics
since February 2021
6693

Article info
views

3244

PDF
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

Journal of data science

  • Online ISSN: 1683-8602
  • Print ISSN: 1680-743X

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • JDS@ruc.edu.cn
  • No. 59 Zhongguancun Street, Haidian District Beijing, 100872, P.R. China
Powered by PubliMill  •  Privacy policy