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1 Polynomial/Spline Basis Functions

In this section, we introduce the polynomial and spline basis functions that are implemented in
the package splines2 but not covered in the main text.

1.1 Generalized Bernstein Polynomials

Bernstein polynomials of degree k correspond to the polynomial terms from the binomial expan-
sion of 1 = [u+(1−u)]k. The ith Bernstein polynomial basis denoted by G̃i,k(u) are defined for
0 ≤ u ≤ 1 as

G̃i,k(u) =

(

k

i

)

ui(1− u)k−i, i ∈ {0, . . . , k}. (1)

For a given boundary [L,U ] and L ≤ x ≤ U , the generalized Bernstein polynomials are defined
by replacing u with (x− L)/(U − L) in (1),

Gi,k(x) =
1

(U − L)k

(

k

i

)

(x− L)i(U − x)k−i, i ∈ {0, . . . , k}, (2)

which can also be defined through a recursive manner (see Prautzsch et al., 2002, Chapter 2) as
follows:

Gi,k(x) =
x− L

U − L
Gi−1,k−1(x) +

U − x

U − L
Gi,k−1(x), i ∈ {0, . . . , k},

where G0,0(x) = 1 and G−1,k−1(x) = Gk,k−1 = 0 for k ∈ {1, 2, . . .}. In fact, the generalized
Bernstein polynomials of degree k are equivalent to the B-splines of a same degree with no internal
knots. See Section 1.2 for a brief introduction to B-splines. Therefore, Bernstein polynomials and
B-splines share several common properties. For example, we have Gi,k(x) ≥ 0,

∑k
i=0Gi,k(x) = 1,

Gi,k(x− L) = Gk−i,k(U − x), and Gi,k(L) = Gk−i,k(U) = 1(i = 0), ∀i ∈ {0, . . . , k}.
The first derivatives of the generalized Bernstein polynomials can be derived directly from

(2) or given recursively by

d

dx
Gi,k(x) =

k

U − L
(Gi−1,k−1(x)−Gi,k−1(x)) ,

which makes it easier to obtain the derivatives of higher order. Similarly, the integrals of the
generalized Bernstein polynomials can be defined recursively by

∫ x

L

Gi,k(t)dt =
U − L

k + 1

k+1
∑

l=i+1

Gl,k+1(x).
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Figure S1: Generalized Cubic Bernstein Polynomial basis functions and their first derivatives
and integrals.

Figure S1 visualizes the generalized Bernstein polynomial basis functions of degree 3, their
first derivatives, and integrals, respectively, which can be obtained by the function bernsteinPoly()

of the package splines2 as follows:

x <- seq.int(- 1, 2, 0.01) # set x from -1 to 2

## generalized cubic Bernstein polynomials, their derivatives, and integrals

bp_mat <- bernsteinPoly(x, intercept = TRUE) # basis functions

dbp_mat <- bernsteinPoly(x, intercept = TRUE, derivs = 1) # 1st derivatives

ibp_mat <- bernsteinPoly(x, intercept = TRUE, integral = TRUE) # integrals

The cubic basis functions were produced by default. For the first derivatives, we specified
the argument derivs = 1 of the function bernsteinPoly(). Alternatively, we can utilize the
function deriv() to obtain the first derivatives with ease (e.g., deriv(bp_mat)). The integrals
were returned when we specified integral = TRUE (and derivs = 0 by default).

1.2 B-Splines

B-splines or basic splines are widely used tools in numerical analysis and have close connections
to other spline basis functions introduced in this article and the main text. For a given k ∈
{1, 2, . . .}, the ith B-spline basis of degree k (or order d = k+1) denoted by Bi,k(x) based on the
simple knot sequence sk can be defined by the following Cox–de Boor recursive formula (Cox,
1972; De Boor, 1972):

Bi,k(x | sk) =

(

x− ti
ti+k − ti

)

Bi,k−1(x | sk) +

(

ti+k+1 − x

ti+k+1 − ti+1

)

Bi+1,k−1(x | sk), (3)

with

Bl,0(x | sk) =

{

1, tl ≤ x < tl+1

0, otherwise
, l ∈ {1, . . . , d+ p− 1}, (4)

where L ≤ x < U , p = m+d represents the degrees of freedom, and i ∈ {1, . . . , p}. The recursive
definition implicitly follows the convention that Bi,k−1(x | sk) = Bi,k−1(x | sk)/(ti+k − ti) = 0 if
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ti+k = ti. In practice, we may let Bi,k(U | sk) take the limit from the left so that each basis is
defined for all x ∈ {x | L ≤ x ≤ U}.

Notice that the simple knot sequence sk that depends on the boundary knots, the internal
knots, and the degree k is fixed when we apply the recursive formula (3). For instance, the simple
knot sequence s2 for the quadratic spline basis functions satisfies t1 = t2 = t3 = L < t4 < · · · <
tm+3 < U = tm+4 = tm+5 = tm+6, where tj+3 = ξj , j ∈ {1, . . . ,m}. From (4), we have B1,0(x |
s2) = B2,0(x | s2) = 0, B3,0(x | s2) = 1(t3 ≤ x < t4), . . ., Bm+3,0(x | s2) = 1(tm+3 ≤ x < tm+4),
and Bm+4,0(x | s2) = Bm+5,0(x | s2) = 0. Then we may obtain Bi,1(x | s2) for i ∈ {1, . . . , p+1}
by setting k = 1 in (3). At last, the desired quadratic basis Bi,1(x | s2) for i ∈ {1, . . . , p} can be
produced by (3) again with k = 2.

The B-splines of degree k are nonnegative over [L,R] subject to
∑p

i=1Bi,k(x | sk) = 1. In
addition, the B-splines have local support meaning that Bi,k(x | sk) is positive for x ∈ (ti, ti+k+1)
but zero for x outside of [ti, ti+k+1], which is an important property we may utilize when imple-
menting (3). Although the B-splines are defined recursively, they are still polynomials in essence.
Therefore, one would expect closed-form expressions of their derivatives and integrals. De Boor
(1978, Chapter 10) gave the derivatives and integrals of B-splines in closed-form formulas, which
were more recently reviewed and discussed by Bhatti and Bracken (2006).

The first derivative of ith B-spline basis of degree k, for k ∈ {1, 2, . . .}, can be derived by
induction using (3) and is given by

d

dx
Bi,k(x | sk) =

(

k

ti+k − ti

)

Bi,k−1(x | sk)−

(

k

ti+k+1 − ti+1

)

Bi+1,k−1(x | sk), (5)

where i ∈ {1, . . . , p}. We may derive the second derivatives by taking the derivatives again on
both sides of (5) and applying (5) for B-splines of degree k−1. Such a procedure can be repeated
for the derivatives of higher order.

To derive the integrals of B-splines, let us consider the first derivative of the following spline
function s(x) =

∑p+1
i=1 βiBi,k+1(x | sk+1),

d

dx

p+1
∑

i=1

βiBi,k+1(x | sk+1) =

p+1
∑

i=1

[

βi(k + 1)

ti+k+1 − ti

]

Bi,k(x | sk+1)−

[

βi(k + 1)

ti+k+2 − ti+1

]

Bi+1,k(x | sk+1)

=

p+1
∑

i=2

(k + 1)

(

βi − βi−1

ti+k+1 − ti

)

Bi,k(x | sk+1), (6)

where tl is defined for sk+1, l ∈ {1, . . . , d + p + 2}, and the second equation holds as we have
B1,k(x | sk+1) = Bp+2,k(x | sk+1) = 0. Let βl = 1(l ≥ j) for a given j ∈ {2, . . . , p+ 1}. Then

d

dx

p+1
∑

l=j

Bl,k+1(x | sk+1) =

(

k + 1

tj+k+1 − tj

)

Bj,k(x | sk+1). (7)

By integrating the both side of (7), replacing Bj,k(x | sk+1) equivalently with Bj−1,k(x | sk),
and replacing j with i+ 1, we obtain the integral of Bi,k(x | sk) from t1 to x as follows:

∫ x

t1

Bi,k(t | sk)dt =

(

ti+k+2 − ti+1

k + 1

) p+1
∑

l=i+1

Bl,k+1(x | sk+1). (8)

where ti+k+2 and ti+1 are defined for sk+1, i ∈ {1, . . . , p}.



4 Wang, W. and Yan J.

1.3 Natural Cubic Splines

A cubic spline function s(x) = β>B3(x) is called a natural cubic spline function if it is sub-
ject to the additional constraints that d2s(x)

/

dx2
∣

∣

x=L
= d2s(x)

/

dx2
∣

∣

x=U
= 0, where β =

(β1, . . . , βp)
>, B3(x) = (B1,3(x), . . . , Bp,3(x))

> is the cubic spline vector, and p = m + 4. In
addition, a natural cubic spline function is linear beyond the boundary, which suggests that the
first (second) derivatives remain constants (zeros) outside the boundary. By definition, one can
construct a natural cubic spline function from cubic splines, such as cubic B-splines, and impose
the curvature constraints at and beyond the boundary. Alternatively, we show how to derive a
set of cubic spline basis functions that satisfy those curvature conditions.

Let B3(x) represent the cubic B-spline basis vector for given boundary and m distinct
interior knots. Consider a set of cubic splines {Ni(x) | i ∈ {1, . . . , l}} satisfying that N(x) =
H>B3(x), where N(x) = (N1(x), . . . , Nl(x))

> and H is a p×l full column rank matrix. Suppose
s̃(x) = β̃>N(x) = β̃>H>B3(x) is a natural cubic spline function, where β̃ = (β̃1, . . . , β̃l)

>. Let
d2B3(x)

/

dx2 = (d2B1,3(x)
/

dx2 , . . . , d2Bp,3(x)
/

dx2 )> denote the elementwise second deriva-

tives of B3(x). Then the curvature conditions at the boundary are equivalent to C>Hβ̃ = 0,
where C = ( d2B3(x)

/

dx2
∣

∣

x=L
, d2B3(x)

/

dx2
∣

∣

x=U
). It can be verified from (5) that C is of full

column rank. We define N(x) = H>B3(x) forms a set of natural cubic splines if C>Hβ̃ = 0

holds ∀β ∈ R
p. Therefore, it is desired to find a matrix H such that C>H = 0, i.e., the columns

of H belong to the null space of C>.
For a p× q full column rank rectangular matrix C, where p > q = 2, one may obtain a set

of orthogonal basis functions for the null space of C> from the QR decomposition of C. More
specifically, suppose the QR decomposition of C gives

C = QR = [Q1 Q2]

[

R1

0

]

= Q1R1,

where Q is a p × p orthogonal matrix, Q1 ∈ R
p×q and Q2 ∈ R

p×(p−q) subject to Q>
1 Q2 = 0,

R ∈ R
p×q, and R1 ∈ R

q×q. Then the columns of Q2 can serve as the orthogonal basis functions
for the null space of C> as C>Q2 = 0. Let H = Q2 and we obtain a set of natural cubic spline
bases as N(x) = Q>

2 B3(x). It is the procedure that the function ns() of the splines package
follows.

The approach based on the QR decomposition works for any cubic splines. However, it does
not take advantage of the local support property of B-splines. We can explicitly write down C

for cubic B-splines from (5). The first and second columns of C denoted by C1 and C2 are,
respectively,

C1 =
(

C1,1, C2,1, C3,1,0
>

p−3

)>

, C2 =
(

0
>

p−3, Cp−2,2, Cp−1,2, Cp,2

)>

,

where C1,1 = 6[(t5 − t2)(t5 − t3)]
−1, C3,1 = 6[(t6 − t3)(t5 − t3)]

−1, C2,1 = −C1,1 −C3,1, Cp−2,2 =
6[(tm+6 − tm+3)(tm+6 − tm+4)]

−1, Cp,2 = 6[(tm+7 − tm+4)(tm+6 − tm+4)]
−1, Cp−1,2 = −Cp−2,2 −

Cp,2, and 0p−3 is a zero vector of length (p − 3). Given the explicit expression of C for cubic
B-splines and number of internal knots, we are able to obtain specific choices of H such that
C>H = 0 without using the QR decomposition. When no internal knot or one internal knot is
placed, we may choose, respectively,

H> =

[

3 2 1 0
0 1 2 3

]

, (9)
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and

H> =





−C2,1/C1,1 1 0 0 0
0 −C3,1/C2,1 1 −Cp−2,2/Cp−1,2 0
0 0 0 1 Cp−1,2/Cp,2



 . (10)

While two or more internal knots are placed, we can let

H> =













1 1 1 0
>
m−2 0 0 0

0 1 −C2,1/C3,1 0
>
m−2 0 0 0

0m−2 0m−2 0m−2 Im−2 0m−2 0m−2 0m−2

0 0 0 0
>
m−2 −Cp−1,2/Cp−2,2 1 0

0 0 0 0
>
m−2 1 1 1













, (11)

where Im−2 is a (m− 2)× (m− 2) identity matrix and 0m−2 is a zero vector of length (m− 2).
Notice that the chosen H consists of nonnegative elements. The natural cubic splines given
by N(x) = H>B3(x) are thus nonnegative within the boundary. Additionally, the derivatives
and integrals of the resulting natural cubic splines can be obtained from the derived H>. For
example, the element-wise first derivatives of N(x) are given by H> dB3(x)/dx . The function
naturalSpline() in the splines2 package follows this approach to produce natural cubic splines,
their corresponding derivatives, and integrals.

2 Micro-Benchmarks

The R code that produced the micro-benchmark results in Section 5 of the main text is as follows.

library(microbenchmark)

library(splines)

library(splines2)

set.seed(123)

x <- seq.int(0, 1, 1e-3) # set x

degree <- 3 # cubic basis functions

ord <- degree + 1 # set order

internal_knots <- seq.int(0.1, 0.9, 0.1) # set internal knots

boundary_knots <- range(x) # set boundary knots

## knot sequence without internal knots

all_knots0 <- rep(boundary_knots, each = ord)

## knot sequence with internal knots

all_knots <- sort(c(internal_knots, rep(boundary_knots, ord)))

coef_sp <- rnorm(length(all_knots) - ord) # set coef for comparing ibs::ibs()

derivs <- 2 # comparing second derivatives

## B-splines

bs_benchmark <- microbenchmark(

"splines::bs()" = bs(x, knots = internal_knots, degree = degree,

intercept = TRUE),

"splines::splineDesign()" = splineDesign(x, knots = all_knots, ord = ord),
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"splines2::bSpline()" = bSpline(x, knots = internal_knots, degree = degree,

intercept = TRUE),

times = 1e3

)

## Bernstein Polynomial (B-splines without internal knots)

bp_benchmark <- microbenchmark(

"splines::bs()" = bs(x, degree = degree, intercept = TRUE),

"splines::splineDesign()" = splineDesign(x, knots = all_knots0, ord = ord),

"splines2::bernsteinPoly()" = bernsteinPoly(x, degree = degree,

intercept = TRUE),

times = 1e3

)

## Second Derivatives of B-splines

dbs_benchmark <- microbenchmark(

"splines::splineDesign()" = splineDesign(x, knots = all_knots,

ord = ord, derivs = derivs),

"splines2::dbs()" = dbs(x, derivs = derivs, knots = internal_knots,

degree = degree, intercept = TRUE),

times = 1e3

)

## Integrals of B-splines

ibs_benchmark <- microbenchmark(

"ibs::ibs()" = ibs::ibs(x, knots = all_knots, ord = ord, coef = coef_sp),

"splines2::ibs()" = as.numeric(

splines2::ibs(x, knots = internal_knots, degree = degree,

intercept = TRUE) %*% coef_sp

),

times = 1e3

)

## Natural Cubic Splines

ns_benchmark <- microbenchmark(

"splines::ns()" = ns(x, knots = internal_knots, intercept = TRUE),

"splines2::naturalSpline()" = naturalSpline(

x, knots = internal_knots, intercept = TRUE

),

times = 1e3

)

## Periodic Splines

pbs_benchmark <- microbenchmark(

"pbs::pbs()" = pbs::pbs(x, knots = internal_knots, degree = degree,

intercept = TRUE, periodic = TRUE),
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"splines2::mSpline()" = mSpline(

x, knots = internal_knots, degree = degree,

intercept = TRUE, periodic = TRUE

),

times = 1e3

)

The information of the R session where the micro-benchmarks were performed is as follows:

xfun::session_info(package = c("splines", "splines2",

"ibs", "pbs", "microbenchmark"))

## R version 4.1.0 (2021-05-18)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Arch Linux

##

## Locale:

## LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

## LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

## LC_PAPER=en_US.UTF-8 LC_NAME=C

## LC_ADDRESS=C LC_TELEPHONE=C

## LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

## Package version:

## graphics_4.1.0 grDevices_4.1.0 ibs_1.4

## methods_4.1.0 microbenchmark_1.4-7 pbs_1.1

## Rcpp_1.0.7 RcppArmadillo_0.10.6.0.0 splines_4.1.0

## splines2_0.4.4.9000 stats_4.1.0 utils_4.1.0

We visualized the relative performance given in Figure 7 of the main text as follows:

## add labels

bs_benchmark$basis <- "B-Splines"

bp_benchmark$basis <- "Bernstein Polynomials"

dbs_benchmark$basis <- "Derivatives of B-Splines"

ibs_benchmark$basis <- "Integrals of B-Splines"

ns_benchmark$basis <- "Natural Cubic Splines"

pbs_benchmark$basis <- "Periodic Splines"

## relative benchmark by median of splines2

rel_med <- function(dat) {

idx <- grepl("splines2", dat$expr, fixed = TRUE)

med_x <- median(dat[idx, "time"])

dat$time <- dat$time / med_x

dat
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}

## create data for the plot

gg_dat <- rbind(

rel_med(bs_benchmark),

rel_med(bp_benchmark),

rel_med(dbs_benchmark),

rel_med(ibs_benchmark),

rel_med(ns_benchmark),

rel_med(pbs_benchmark)

)

gg_dat <- as.data.frame(gg_dat)

## visualization with the help of ggplot2

library(ggplot2)

ggplot(data = gg_dat, aes(x = expr, y = time)) +

geom_boxplot(outlier.size = 0.5, alpha = 0.5) +

coord_flip() +

facet_wrap(vars(basis), scales = "free", ncol = 2) +

scale_y_continuous(trans = "log", breaks = c(1, 2, 4, 8, 16),

limits = c(0.5, 16)) +

theme_bw() +

ylab("Relative Performance Compared to splines2") +

xlab("")
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