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Abstract

Splines are important tools for the flexible modeling of curves and surfaces in regression analy-
ses. Functions for constructing spline basis functions are available in R through the base package
splines. When the curves to be modeled have known characteristics in monotonicity or curva-
ture, more efficient statistical inferences are possible with shape-restricted splines. Such splines,
however, are not available in the R package splines. The package splines2 provides easy-to-use
shape-restricted spline basis functions, along with their derivatives and integrals which are im-
portant tools in many inference scenarios. It also provides additional splines and features that
are not available in the splines package, such as periodic splines and generalized Bernstein poly-
nomials. The usages of the functions are illustrated with shape-restricted regression, recurrent
event data analysis, and extreme-value copulas.

Keywords Cox–de Boor algorithm; derivatives; integrals; monotone regression; periodic
splines

1 Introduction
Splines are piecewise polynomials that are continuously differentiable up to a certain degree,
connected at a sequence of breakpoints called knots. A spline function can be represented by a
linear combination of spline basis functions. A variety of spline-based regression methods such
as smoothing splines, penalized splines (Eilers and Marx, 1996), and shape-restricted splines
(e.g., Meyer, 2008; Wang and Ghosh, 2012) have been widely used for nonparametric regression
problems. Non-uniform B-splines are often used as the basis functions in spline-based methods.
Besides B-splines, I-splines (Ramsay, 1988) as integrals of M-splines (Curry and Schoenberg,
1966) are used for monotone regressions; C-splines (Meyer, 2008) as integrals of I-splines are
used for shape-restricted regressions. In some applications, such as time-to-event analysis, the
derivatives or integrals of the basis functions are needed in inferences. A user-friendly and com-
putationally efficient implementation to construct the desired spline basis functions, along with
their derivatives or integrals, is necessary for routine uses of spline-based methods.

There are several existing implementations providing various spline basis functions and their
derivatives/integrals in R. We focus on those R packages that are available on the Comprehensive
R Archive Network (CRAN). The base R package splines (R Core Team, 2020) provides functions
to construct B-splines, their derivatives, and natural cubic splines. Packages ibs (Chen, 2018)
and pbs (Wang, 2013) provide the integral of B-splines and periodic B-splines, respectively.
The orthogonalsplinebasis package (Redd, 2015) provides functions for orthogonal B-spline basis
functions and their derivatives and integrals. See also Perperoglou et al. (2019) for a recent
review of other packages that contain spline-based regression routines.
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The package splines2 is intended to be a comprehensive, efficient supplement to the package
splines. Since its first appearance on CRAN in September 2016, splines2 has been actively devel-
oped and maintained over the years. The package contains several attractive features. First, it
provides spline basis functions that are not available in splines. Such splines include M-splines,
I-splines, and C-splines for shape-restricted regression; generalized Bernstein polynomials; and
periodic splines. Second, it generalizes and refines the implementation of the B-splines and natu-
ral cubic spline basis functions in splines. It allows basis functions of degree zero, which seems to
be trivial but is particularly useful for certain applications (Shea and Torgovitsky, 2020; Mogstad
et al., 2018). The implementation of natural cubic splines utilizes a closed-form null space, which
is computationally more efficient than using the QR decomposition as done in splines. The basis
functions generated this way are nonnegative within the given boundary, which makes it trivial
to impose nonnegativity on the resulting spline function for some applications. The third distinct
feature of splines2 is that derivatives and integrals of all the basis functions (except the integrals
of C-splines) are provided, which can be necessary for some applications such as time-to-event
modeling; the package splines only contains derivatives but not integrals of B-splines. Lastly,
the under-the-hood C++ implementation based on the packages Rcpp (Eddelbuettel, 2013) and
RcppArmadillo (Eddelbuettel and Sanderson, 2014) are made accessible from C++. See Sec-
tion 3 for details. The C++ engine is also why splines2 is computationally more efficient than a
few existing packages in handling common tasks such as integration.

The rest of the article is organized as follows. In Section 2, we provide a practical review
to those spline basis functions implemented in splines2 with a focus on M-splines, I-splines,
C-splines, and periodic splines. The usage of the main functions in the package is summarized
and illustrated in Section 3. In Section 4, we demonstrate the applications of the package to
shape-restricted regression, time-to-event data analysis, and extreme-value copulas, respectively.
Section 5 concludes with a discussion. An introduction to generalized Bernstein polynomials,
B-splines, and natural cubic splines, as well as code for micro-benchmarks, are available in the
Supplementary Materials.

2 Spline Basis Functions

2.1 Knot Sequences

It is necessary to define knot sequences before introducing spline basis functions. Suppose m

(m � 0) distinct internal knots, ξ1, . . . , ξm, are placed within the boundary knots L and U

satisfying L < ξ1 < · · · < ξm < U . Define t1 = · · · = td = L, td+j = ξj , j ∈ {1, . . . , m}, and
U = td+m+1 = · · · = td+p, where k and d = k+1 represent the polynomial degree and the order of
a basis function, respectively, and p = d +m represent the degrees of freedom of a basis function.
Such a nondecreasing sequence t1, . . . , td+p is called the simple knot sequence by Ramsay (1988)
or the clamped knot vector by Piegl and Tiller (1997), where each boundary knot is repeated
d times (to allow basis functions to be discontinuous at the boundary) while each interior knot
appears only once. Given internal knots, ξ1, . . . , ξm, and boundary knots, L and U , we denote
the simple knot sequence intended for splines of degree k by sk. Splines of degree k ∈ {1, 2, . . .}
from the simple knot sequence sk are continuously differentiable at internal knots up to k − 1
times, which is the most commonly used definition of splines.

More generally, a knot is called an r-fold knot (Prautzsch et al., 2002, Chapter 5) or to have
multiplicity r if the knot appears r times in the knot sequence, where r � k is a positive integer.
Multiplicities induce discontinuities. For example, B-splines are continuous up to the (k − r)th
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derivative at the internal knot ξj that has multiplicity r. Further, we can relax t1 = · · · = td = L

and td+m+1 = · · · = td+p = U , respectively, to t1 � · · · � td = L and U = td+m+1 � · · · � td+p.
Such a generalized knot sequence, t1 � · · · � td = L < td+1 � · · · � td+m < U = td+m+1 � · · · �
td+p, is referred to as the extended partition in Schumaker (2007), where m represents the total
multiplicities of internal knots instead of the number of distinct internal knots. The degrees of
freedom of the resulting spline basis functions equal the length of the knot sequence minus the
order.

2.2 M-Splines, I-Splines, and C-Splines
M-splines are also called Curry–Schoenberg B-splines in De Boor (1978). Given a simple knot
sequence sk, the ith M-spline basis function (Curry and Schoenberg, 1966) of degree k denoted
by Mi,k(x | sk) can be considered as the normalized B-spline basis function satisfying

Mi,k(x | sk) = (k + 1)Bi,k(x | sk)/(ti+k+1 − ti), (1)

so that
∫ td+p

t1
Mi,k(x | sk) = 1, where Bi,k(x | sk) is the corresponding B-spline basis function,

i ∈ {1, . . . , p}. See the Supplementary Materials for a brief introduction to B-splines.
Similar to the Cox–de Boor recursive formula for B-splines, the M-spline basis function

Mi,k(x | sk) can be defined recursively by

Mi,k(x | sk) = k + 1

k(ti+k+1 − ti)

[
(x − ti)Mi,k−1(x | sk) + (ti+k+1 − x)Mi+1,k−1(x | sk)

]
.

Furthermore, the first derivative of Mi,k(x | sk) is as follows:

d
dx

Mi,k(x | sk) = k + 1

ti+k+1 − ti

(
Mi,k−1(x | sk) − Mi+1,k−1(x | sk)

)
. (2)

The M-splines integrated from t1 to x were referred to as I-splines in Ramsay (1988). To be
more specific, the ith I-spline basis function of degree k denoted by Ii,k(x | sk) for i ∈ {1, . . . , p}
is defined to be

∫ x

t1
Mi,k(t | sk) dt . We have

Ii,k(x | sk) =
p+1∑

l=i+1

Bl,k+1(x | sk+1) =
p+1∑

l=i+1

(
tl+k+2 − tl

k + 2

)
Ml,k+1(x | sk+1), (3)

where tl+k+2 and tl+1 are defined for the knot sequence sk+1.
M-splines are nonnegative for L � x � U . Hence, I-splines are monotonically nondecreasing

from L to U by definition. Ramsay (1988) proposed using I-splines for monotone regression. A
monotonically nondecreasing (nonincreasing) function can be fitted by a linear combination of
I-splines and an additional intercept term, where the monotonicity is ensured by constraining
the coefficients of I-splines to be nonnegative (nonpositive).

For regressions with curvature restrictions, Meyer (2008) introduced a class of convex splines
known as C-splines. By integrating both sides of (3) for I-splines of degree k + 1, we obtain the
formula for the integral of the ith I-spline basis function denoted by C̃i,k(x | sk) as follows:

C̃i,k(x | sk) =
p+1∑

l=i+1

∫ x

t1

Bl,k+1(t | sk+1)dt =
p+1∑

l=i+1

(
tl+k+2 − tl

k + 2

)
Il,k+1(x | sk+1).
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We define the ith C-spline basis function denoted by Ci,k(x | sk) to be the scaled C̃i,k(x | sk),

Ci,k(x | sk) = C̃i,k(x | sk)/C̃i,k(U | sk), (4)

so that Ci,k(U | sk) = 1 for i ∈ {1, . . . , p}. A convex or concave function can be approximated
by a linear combination of C-splines, an identity function f (x) = x, and an intercept term,
where the coefficients of C-splines are constrained to be nonnegative or nonpositive to guarantee
convexity or concavity, respectively.

A set of M-splines and the corresponding I-splines and C-splines are visualized in the first
row of Figure 1.

2.3 Periodic Splines

We define a spline function s(x) of degree k to be periodic with a cyclic interval from L to U

if it satisfies that s(x) = s(x + U − L) and dκs(x)
/
dxκ = dκs(x + U − L)

/
dxκ , x ∈ R, where

κ ∈ {1, . . . , k − 1}. In applications to computer-aided design (CAD), periodic basis functions are
used to form closed curves or surfaces (e.g., Farin and Hansford, 2000).

Given that m � k − 1, Piegl and Tiller (1997, Chapter 12) gave two sufficient conditions for
a B-spline function of degree k to be periodic with a cyclic interval from L to U as follows:
1. The underlying B-spline basis functions are based on an extended knot sequence sk satisfying

tk−i = tk−i+1−(tm+d+1−i−tm+d−i) and tm+d+2+i = tm+d+1+i−(tk+2+i−tk+1+i ) for i ∈ {0, . . . , k−1},
where td = L and td+m+1 = U ;

2. The first k coefficients and the last k coefficients must coincide.
The first condition essentially provides a simple procedure to construct an extended knot

vector from the given m internal knots td+1, . . . , td+m, and a cyclic interval from L to U . For the
B-splines {B1, . . . , Bm+d} resulting from the extended knot sequence satisfying the first condition,
we incorporate the second condition by summing up the first k and the last k basis functions,
respectively, to a new set of k basis functions {B1 + Bm+2, . . . , Bk + Bm+d}, which along with
the remaining basis functions {Bk+1, . . . , Bm+1} (if m � k) form a set of periodic B-spline basis
functions. A periodic spline function can then be simply represented by a linear combination of
these basis functions.

Such a procedure can also be applied directly to construct periodic M-spline basis functions.
The constructed periodic M-splines inherit the normalization property of regular M-splines and
have unit integrals from L to U . It is thus easier to compute the integrals of the basis functions
from L to any x � U . For instance, a set of periodic M-splines and the corresponding first
derivatives and integrals are visualized in the second row of Figure 1.

3 Usage
Package splines2 provides implementation of those spline basis functions reviewed in Section 2
and the Supplementary Materials. The function interfaces are designed to be similar and consis-
tent to the function bs() of splines so that no unnecessary learning curve is required for those
users familiar with this package. The common arguments are x, df, knots, degree, intercept,
and Boundary.knots, all of which have the same meaning and equivalent default values as bs()
except that the default value of the argument intercept is TRUE for iSpline() and cSpline().
The x represents the predictor variable and allows NA’s. Either df or knots can be specified to
adjust the degrees of freedom of the basis functions given their polynomial degree specified by
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Table 1: Summary of the function interfaces compared to the arguments of splines::bs() from
splines.

Function Additional Arguments Inapplicable Arguments

bSpline() derivs, integral, ...
ibs() ...
dbs() derivs, ...

bernsteinPoly() derivs, integral, ... knots
naturalSpline() derivs, integral, ... degree

mSpline() derivs, integral, periodic, ...
iSpline() derivs, ...
cSpline() derivs, scale, ...

degree. The function bSpline() from splines2 extends the bs() function by allowing degree =
0 for piecewise constant basis functions. If intercept = TRUE, the complete set of basis functions
will be returned. Otherwise, the first basis function will be excluded from the returned matrix.

Table 1 gives a summary of the argument list of the main functions compared to the
bs() function. The argument derivs takes a nonnegative integer representing the order of
derivatives of the spline basis functions, while the argument integral takes a boolean value
and the integrals of the basis functions will be returned if integral = TRUE is specified. For
C-splines, the argument scale takes a boolean value indicating if the scaling of the integral of
the I-spline basis functions in (4) is needed.

The package also provides several S3 methods for the basis matrix returned by any of the
main functions. More specifically, we implemented a series of predict() methods to evaluate
the basis functions at any (new) x specified by its second argument newx following the method
predict.bs() of splines. In addition, the package provides deriv() methods for the derivatives
of each basis function. The order of the derivatives can be specified by its second argument
derivs. The knots() methods retrieve the placed internal or boundary knots, which can be
useful when the knots are determined automatically based on the input x.

We created various example spline basis functions in the following code chunk by using the
package splines2. We fixed the degree of the basis functions to be 3 and placed the boundary
knots at 0 and 2. For all the spline basis functions, we placed the internal knots at 0.3, 0.7, 1.2,
and 1.5. The resulting basis functions are visualized by distinct colors and line types in Figure 1,
where the placement of the internal knots is indicated by gray dashed vertical lines.

library(splines2)
x <- seq.int(0, 2, 0.01) # set x
int_knots <- c(0.3, 0.7, 1.2, 1.5) # internal knots
ms_mat <- mSpline(x, knots = int_knots, intercept = TRUE) # M-splines
is_mat <- iSpline(x, knots = int_knots, intercept = TRUE) # I-splines
cs_mat <- cSpline(x, knots = int_knots, intercept = TRUE) # C-splines
## periodic splines, their derivatives, and integrals
pm_mat <- mSpline(x, knots = int_knots, intercept = TRUE, periodic = TRUE)
dpm_mat <- mSpline(x, knots = int_knots, intercept = TRUE, periodic = TRUE,

derivs = 1) # or equivalently `deriv(pm_mat)`
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ipm_mat <- mSpline(x, knots = int_knots, intercept = TRUE, periodic = TRUE,
integral = TRUE)

bs_mat <- bSpline(x, knots = int_knots, intercept = TRUE) # B-splines
dbs_mat <- deriv(bs_mat) # B-spline Derivatives
ibs_mat <- ibs(x, knots = int_knots, intercept = TRUE) # B-spline Integrals
## natural cubic splines, their derivatives, and integrals
ns_mat <- naturalSpline(x, knots = int_knots, intercept = TRUE)
dns_mat <- deriv(ns_mat)
ins_mat <- naturalSpline(x, knots = int_knots, intercept = TRUE,

integral = TRUE)

To be more specific, we first illustrated M-splines, I-splines, and C-splines, respectively,
with the functions mSpline(), iSpline(), and cSpline(); see the first row of Figure 1 for
the basis functions. Second, we created the periodic M-splines introduced in Section 2.3 and
their derivatives and integrals, respectively, by using the function mSpline(); see the second
row of Figure 1 for the corresponding basis functions. Third, we obtained B-splines, natural
cubic splines, and their first derivatives and integrals, respectively. We refer readers to the
Supplementary Materials for the introduction to B-splines and natural cubic splines implemented
in the package. The resulting basis functions are visualized in the last two rows of Figure 1.

In addition to the interface in R, the package splines2 includes a C++ header-only library,
which allows the construction of spline basis matrices directly in C++ with the help of the
packages Rcpp and RcppArmadillo. The Rcpp interface is intended for package developers who
would like to use the package at C++ level. An introduction is available in one of the package
vignettes (accessible by vignette("splines2-wi-rcpp")).

4 Applications

4.1 Shape-Restricted Regression

Shape constraints in terms of monotonicity or curvature arise naturally in many applications.
Examples are growth curves in population health, dose-response models in phase I clinical trials,
and utility functions in economics. Consider a general nonparametric regression model E(Y |
X) = f (X), where X and Y are R-valued predictor and response variables, respectively. The
observed data are independent pairs of (xi, yi), i ∈ {1, . . . , n}. The true function f (·) is assumed
to be continuous with certain known shape constraints. We illustrate how to apply I-splines and
C-splines to shape-restricted regression following Ramsay (1988) and Meyer (2008), respectively,
to estimate f (·).

A non-decreasing curve can be fitted by a linear combination of I-splines with an additional
intercept where the coefficients of the I-spline basis functions are constrained to be nonnegative
(Ramsay, 1988). The coefficients can be estimated by constrained least squares,

θ̂ = arg min
θ

n∑
i=1

[
yi − (α0 + β�I (xi))

]2
, s.t. β � 0, (5)

where the yi ’s are the realizations of the Yi ’s, θ = (α0, β
�)�, α0 is the intercept, and I (xi) is

a vector that consists of I-splines evaluated at xi . The minimization problem can be solved by
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Figure 1: Various example spline basis functions, their derivatives and integrals that are available
in the R package splines2.
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nonnegative least squares methods, or more generally, quadratic programming methods. The
latter solve the minimization problem:

θ̂ = arg min
θ

−d�θ + 1

2
θ�Dθ , s.t. A�θ � b0, (6)

where d and b0 are given column vectors, and D and A are known matrices. Define y =
(y1, . . . , yn)

�, X = [
1 I (X)

]
, and I (X) = [

I (x1) · · · I (xn)
]�, where 1, I (X), and {I (xi)}

are treated as submatrices. Problem (5) is solved with d = y�X, b0 = 0, D = X�X, and
A� = [

0 Ip

]
, where Ip is an identity matrix of size p × p, and p is the degrees of freedom of

the I-spline basis functions.
We applied iSpline() and implemented the estimation procedure with the help of the

quadprog package (Turlach and Weingessel, 2019) as follows:

library(splines2)
library(quadprog)
## Standardize x and y
standardize <- function(x, y) {

sx <- scale(x); sy <- scale(y)
x_bar <- attr(sx, "scaled:center"); x_sd <- attr(sx, "scaled:scale")
y_bar <- attr(sy, "scaled:center"); y_sd <- attr(sy, "scaled:scale")
list(sx = sx, x_bar = x_bar, x_sd = x_sd,

sy = sy, y_bar = y_bar, y_sd = y_sd)
}
## Solve by quadratic programming and scale coefficients back
qp_solve <- function(standardized, A_mat, x_mat, ...) {

d_vec <- with(standardized, crossprod(sx, sy)) # (yˆT X)ˆT
D_mat <- crossprod(standardized$sx) # XˆT X
sbeta <- quadprog::solve.QP(D_mat, d_vec, A_mat, ...)$solution
## scale the coefficients back
beta0 <- with(standardized,

-as.numeric(crossprod(x_bar * y_sd / x_sd, sbeta)) + y_bar)
beta1 <- with(standardized, y_sd / x_sd * sbeta)
list(x_mat = x_mat,

coefficients = c("(Intercept)" = beta0, beta1),
fitted = as.numeric(x_mat %*% beta1) + beta0)

}
## Monotone regression by I-splines
mono_fit <- function(x, y, monotone = c("increasing", "decreasing"), ...) {

monotone <- match.arg(monotone)
x_mat <- iSpline(x, ..., intercept = TRUE) # create I-splines
standardized <- standardize(x_mat, y) # standardization
A_mat <- diag(ncol(standardized$sx)) # set matrix A
if (monotone == "decreasing") A_mat <- -A_mat # flip the sign of matrix A
qp_solve(standardized, A_mat, x_mat)

}

The standardizations of y and each column of X by the function standardize() increase the
numerical stability and simplify the procedure by eliminating the need to include an additional
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intercept term. Notice that the linear constraints on the coefficients of the unstandardized basis
functions can be equivalently applied to the coefficients of the standardized basis functions with-
out modifying A. The function qp_solve() returns the estimates of θ by solving the quadratic
programming problem. It is straightforward to fit a nonincreasing curve with I-splines by flipping
the sign of A in the function mono_fit().

We applied mono_fit() to the age-income data used in Ruppert et al. (2003) and Meyer
(2008). The dataset consists of 205 Canadian workers and is available in the SemiPar package
(Wand, 2018). A nondecreasing relationship between the age of workers and the expected loga-
rithm of the income was considered. In the following code chunk, we fitted three nondecreasing
curves by I-splines and specified the degrees of freedom of the basis functions to be 6, 10, and
14, respectively.

data(age.income, package = "SemiPar")
dfs <- c(6, 10, 14)
mfits <- lapply(dfs, function(d) {

with(age.income, mono_fit(age, log.income, df = d))
})

A convex or concave curve can be fitted by a linear combination of C-spline basis functions,
an identity function, and an intercept term, where the coefficients of the C-splines are constrained
to be nonnegative or nonpositive, respectively (Meyer, 2008). For convex regression, we estimate
the coefficients by constrained least squares to minimize the squared error loss,

θ̂ = arg min
θ

n∑
i=1

[
yi − (α0 + α1xi + β�C(xi))

]2
, s.t. β � 0, (7)

where the yi ’s are the realizations of the Yi ’s, θ = (α0, α1, β
�)�, α0 is the intercept, α1 is the

coefficient of the linear term, and C(xi) is a vector that consists of C-splines evaluated at xi .
Define x = (x1, . . . , xn)

� and X = [
1 x C(X)

]
, where C(X) = [

C(x1) · · · C(xn)
]�. Prob-

lem (7), again, is a quadratic programming problem with d = y�X, b0 = 0, D = X�X, and
A� = [

0 0 Ip

]
, where Ip is an identity matrix of size p × p and p is the degrees of freedom

of the C-spline basis functions. The sign of A is flipped for concave regression.
A combination of the curvature constraint and the monotonicity constraint can be achieved

by introducing an additional constraint in terms of the first derivative at one of the boundary
knots. For instance, to fit a nondecreasing convex (or nonincreasing concave) curve, it suffices
to additionally impose the constraint that the first derivative of the curve is nonnegative (or
nonpositive) at the left boundary. Similarly, to fit a nondecreasing concave (or nonincreasing
convex) curve, we can additionally impose the constraint that the first derivative of the curve
is nonnegative (or nonpositive) at the right boundary. Given the first derivatives of the C-
splines, it is straightforward to add the derivative constraint at the boundary to the original
quadratic programming problem for the curvature constraints only. We applied cSpline() and
implemented the estimation procedure named curv_fit() in the following code chunk:

## curvature-restricted regression
curv_fit <- function(x, y, monotone = c("none", "increasing", "decreasing"),

curvature = c("convex", "concave"), ...) {
monotone <- match.arg(monotone); curvature <- match.arg(curvature)
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min_x <- min(x); range_x <- max(x) - min_x
x_mat <- cSpline(x, ..., intercept = TRUE) # create C-splines
if (monotone != "none") {

right_side <- (monotone == "decreasing" && curvature == "convex") ||
(monotone == "increasing" && curvature == "concave")

side_knot <- knots(x_mat, "boundary")[right_side + 1]
dx_mat <- cbind(1 / range_x, deriv(predict(x_mat, side_knot)))

}
x_mat <- cbind("(Linear)" = (x - min_x) / range_x, x_mat)
standardized <- standardize(x_mat, y)
A_mat <- rbind(0, diag(ncol(x_mat) - 1L))
if (curvature == "concave") A_mat <- - A_mat
if (monotone == "decreasing") dx_mat <- - dx_mat
if (monotone != "none") {

for (j in seq_len(ncol(dx_mat)))
dx_mat[, j] <- dx_mat[, j] / standardized$x_sd[j]

A_mat <- cbind(A_mat, as.numeric(dx_mat))
}
qp_solve(standardized, A_mat, x_mat)

}

Similarly as before, we standardized each C-spline basis function and the identity term
by standardize(). The linear constraints for the desired curvature (and monotonicity) can
be applied to the standardized basis functions and the standardized linear term without any
changes. The coefficient estimates are obtained by solving the quadratic programming problem
and scaling in the helper function qp_solve(). Now suppose there is a concave relationship
between age and the expected logarithm of the income. We can apply the function curv_fit()
to the age-income data as follows:

cfits <- lapply(dfs, function(d) {
with(age.income, curv_fit(age, log.income, "none", "concave", df = d))

})

The fitted nondecreasing and concave curves are visualized, respectively, in the left and
right panel of Figure 2, from which we may find that despite having different degrees of free-
dom, the fitted curves stay closely to each other in each panel. It implies that with shape
constraints, the fitted curves are robust with respect to the choice of the degrees of freedom and
the placement of the internal knots. We also fitted a natural cubic smoothing spline function
(via stats::smooth.spline()) to the age-income data for comparison. The tuning parameter
of the smoothing spline was selected by generalized cross-validation. The fitted smoothing spline
is visualized in both panels of Figure 2, which is neither nondecreasing nor convex without shape
constraints.

To demonstrate simultaneous monotone and curvature constraints, as a second example, we
applied mono_fit() and curv_fit() to the onions dataset that is also available in the SemiPar
package. The degrees of freedom of the I-splines and C-splines considered were similarly 6, 10,
and 14.
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Figure 2: The fitted nondecreasing functions by I-splines (in the left panel) and the fitted concave
functions by C-splines (in the right panel) together with the fitted natural cubic smoothing spline
for the age-income data.

data(onions, package = "SemiPar")
mfits <- lapply(dfs, function(d) {

with(onions, mono_fit(dens, log(yield), "decreasing", df = d))
})
cfits <- lapply(dfs, function(d) {

with(onions, curv_fit(dens, log(yield), "decreasing", "convex", df = d))
})

It is assumed that the logarithm of the onion yield (grams per plant) decreases as the
areal density of plants (plants per square meter) increases. We additionally assumed a convex
relationship between log(yield) and density, which means that the decreasing rate of log(yield)
did not increase as the density increased. The fitted curves with monotonicity constraint are only
visualized in the left panel of Figure 3 and the fitted curves with additional convex constraints
are visualized in the right panel of Figure 3. With additional curvature constraints, the convex
curves fitted by C-splines of different degrees of freedom stay more closely to each other than
the nonincreasing curves fitted by I-splines. Similarly, we fitted a natural cubic smoothing spline
and visualized it in both panels of Figure 3 for comparison, from which we found that the fitted
convex curves were very close to the fitted smoothing spline function overall.

4.2 Time-to-Event Data Analysis
Splines are natural choices to model the baseline hazard function h0(t), the cumulative hazard
function H0(t), or their logarithms, respectively, for time-to-event data. From

∫ t

0 h0(s) ds = H0(t),
either the derivatives or the integrals of the spline basis functions are usually needed to construct
the likelihood function. Similar to the shape-restricted regression, constraints can be imposed to
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Figure 3: The fitted nonincreasing functions by I-splines (in the left panel) and the fitted convex
functions by C-splines (in the right panel) with the natural cubic fitted smoothing spline for the
onions data.

ensure that the estimated baseline cumulative hazard function is nondecreasing over time and
the corresponding baseline hazard estimates are nonnegative. A simple example was given by
Rosenberg (1995), where the baseline hazard function is modeled by B-splines as

h0(t) =
p∑

i=1

βiBi,k(t), H0(t) =
∫ t

0
h0(s)ds =

p∑
i=1

βi

∫ t

0
Bi,k(s)ds,

where Bi,k(t) represents the ith B-spline basis of degree k, and p denotes the degrees of freedom
of the basis functions.

Spline-based methods have been proposed for modeling recurrent event data as well. For
instance, Fu et al. (2016) proposed a gamma frailty model with a piecewise constant rate function
as follows:

ρ(t | xi, ri) = riρ0(t) exp{x�
i β},

where the ri ’s are i.i.d. frailty effects from a gamma distribution with unit mean, ρ0(·) is the
baseline rate function estimated by piecewise constant basis functions, the xi ’s represent co-
variates, and β is the covariate coefficient vector of interest. Wang et al. (2020) extended the
proposed model by modeling the baseline rate function by M-splines in the R package reda.
The model estimation is based on the maximization of the marginal likelihood function, which
involves integrating the rate function. For some applications such as seasonal illness or warranty
claims of snowmobiles, the rate function can be periodic, in which case, the periodic splines
introduced in Section 2.3 become of interest.

For illustration, we generated cyclic recurrent events from 500 processes with a periodic
baseline rate function as follows:
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Figure 4: Histogram of the simulated cyclic recurrent event times. The periodic baseline rate
function is indicated by the red dashed line after scaling for visual comparison.

## simulate recurrent event data from a periodic rate function
library(reda)
set.seed(123) # set random number seed
n <- 500 # number of event process
beta <- 0.2 # covariate coefficient
tau <- 36 # end of follow-up
right <- 12 # end of cyclic interval
foo <- function(x) # the example periodic function

sin(x * pi / 6 + 1) / 50 + 0.05
dat <- simEventData(n, z = matrix(rnorm(n)), zCoef = beta,

endTime = tau, rho = foo, frailty = rgamma,
arguments = list(frailty = list(shape = 2, scale = 0.5)))

The generation utilized the function simEventData() of the reda package. For simplicity,
we considered one covariate generated from the standard normal distribution and a frailty term
from the gamma distribution with shape parameter 2 and scale parameter 0.5. To resemble the
seasonality trend of some practical examples, we set the time unit to be one month and let the
cyclic period last 12 months. We considered the cyclic function f (x) = sin(πx/6 + 1)/50 + 0.05.
The end of follow-up was fixed to be 36 months to include 3 cyclic intervals. The histogram of the
simulated event times is given in Figure 4, from which we may find a clear periodic pattern of the
event density. To visually compare the histogram and underlying baseline rate function, we scaled
the latter so that its integral attained one at the end of the follow-up. The scaled baseline rate
function represented by the red dashed line looks similar to the histogram of the event times in
Figure 4 regarding the seasonality trend, which suggests that the reda::simEventData() works
as expected.
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Figure 5: Estimated baseline rate functions and mean cumulative functions by using ordinary M-
splines and periodic splines, respectively. The black solid lines are the estimates; the dot-dashed
lines are the pointwise 95% confidence intervals; the red dashed lines are the true curves.

The splines2::mSpline() returns the integrals of the periodic basis functions when both
periodic and integral are specified to be TRUE, which makes it straightforward to obtain
the maximum likelihood estimates as if the piecewise constant basis functions were used to
model the baseline rate function. We assumed that the length of each cyclic interval was known
to be 12 months. For the simulated recurrent event data, we applied the ordinary M-splines
and periodic M-splines to fit the baseline rate function, respectively, and obtained the model
estimation results with the help of the function rateReg() of the reda package, which builds
on the periodic splines from the splines2 package. We considered quadratic basis functions. For
ordinary M-splines, we placed eight internal knots at 4, 8, . . ., 32, and placed boundary knots
at 0 and 36 (the end of follow-up). For periodic M-splines, the boundary knots define the cyclic
interval and thus were placed at 0 and 12. Given the boundary knots, we placed three internal
knots at the 25%, 50%, and 75% quantiles of the observed event times relative to the beginning
of the cyclic interval that they belong to, which turned out to be approximately 2.2, 4.8, and
9.2 for the simulated dataset.

The estimated baseline rate functions and their integrals, the estimated baseline mean
cumulative functions (MCF) are visualized, respectively, in the upper panel and the lower panel
of Figure 5, where the point estimates are represented by the black solid lines, the pointwise



512 Wang, W. and Yan, J.

95% confidence interval estimates are indicated by the dash-dotted lines, while the underlying
true baseline rate functions and mean cumulative function are indicated by the red dashed lines,
respectively.

As we expected, the estimated baseline rate function (by using periodic M-splines) followed
the seasonality trend of the true baseline rate function closer over time than using ordinary
M-splines. Despite the bias around the nadir and the peak of the true baseline rate function,
the pointwise confidence interval (CI) estimates of both approaches contained the true baseline
rate function at each time point. However, the width of the CI estimates by using periodic M-
splines was smaller than when using ordinary M-splines, especially around the boundary. The
comparison of the estimated models was similar in terms of the baseline MCF. The estimated
mean cumulative functions were both close to the true curve over time. However, using periodic
M-splines resulted in smaller bias and narrower pointwise CI estimates.

4.3 Extreme-Value Copulas
Consider two random variables X and Y with continuous cumulative distribution functions F

and G, respectively. Let H(x, y) = P(X � x, Y � y) denote their joint distribution function. By
Sklar’s Theorem, there exists a two-dimensional copula C such that H(x, y) = C(F(x), G(y))

and C(u, v) = P(F(X) � u, G(Y ) � v). Following Pickands (1981), a copula C is a bivariate
extreme-value copula if and only if there exists a convex function A : [0, 1] �→ [1/2, 1] such that
for any u, v ∈ (0, 1),

C(u, v) = exp

{
log(uv)A

(
log(v)

log(uv)

)}
.

The convex function A(t) is called the Pickands dependence function associated with C and
satisfies

max(t, 1 − t) � A(t) � 1, t ∈ [0, 1], (8)

and A(0) = A(1) = 1. Each A(t) uniquely defines an extreme-value copula.
Estimation of A(t) can be done by with a nonparametric regression. For a random bivariate

sample {(xi, yi)} from (X, Y ), let Fn and Gn denote the empirical cumulative distribution func-
tions of X and Y , respectively. Define ui = nFn(xi)/(n + 1) and vi = nGn(yi)/(n + 1), where the
asymptotically negligible scaling factor n/(n+ 1) was introduced to avoid problems with density
evaluation at the boundaries of [0, 1]2. Let Cn denote the empirical copula and define

ti = log(vi)

log(uivi)
, zi = log{Cn(ui, vi)})

log(uivi)
.

Then, A(t) can be estimated by nonparametrically regressing the zi ’s on the ti ’s. Cormier et al.
(2014) fit a regression model with the quantile smoothing splines (Koenker et al., 1994; Ng and
Maechler, 2007) subject to the convexity, boundary, and endpoint constraints of A(t) with the
R package cobs (Ng and Maechler, 2020). Nonetheless, the boundary constraints in (8) were
imposed by imposing that Â(j/N) � max(j/N, 1 − j/N), where j ∈ {1, . . . , N − 1} for some
large N such as N = 100. In fact, given that A(t) is convex and passes through 1 when t = 0
and t = 1, an elegant and efficient way to impose the constraints is to require

A′(0) � −1, A′(1) � 1, (9)

where A′(t) is the derivative of A(t).
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We estimate A(t) in a shape-restricted regression problem with the additional derivative and
endpoint conditions at the boundaries, which guarantees the curvature and boundary constraints.
Let C(ti) denote a vector that consists of C-splines evaluated at ti and let dC(t)

/
dt denote the

elementwise first derivative of C(t). Following Problem (7) in Section 4.1, we applied C-splines
to estimate A(t) and reformulated the estimation problem to obtain the following quadratic
programming problem,

−z�Xθ + 1

2
θX�Xθ , s.t. A�

1 θ = 1, A�
2 θ � −1, A�

3 θ � 0,

where z = (z1, . . . , zn)
�, t = (t1, . . . , tn)

�, X = [
1 t C(t)

]
, C(t) = [

C(t1) · · · C(tn)
]�,

A�
1 =

[
1 0 C(0)�
1 1 C(1)�

]
, A�

2 =
[

0 1 dC(t)
/
dt

∣∣
t=0

0 −1 − dC(t)
/
dt

∣∣
t=1

]
,

and A�
3 = [

0 0 Ip

]
. The constraints imposed by A1, A2, and A3 correspond to the endpoint

constraints, the boundary conditions in (9), and the convexity restriction, respectively.
Given the formulated quadratic programming problem, we wrote a straightforward imple-

mentation of the estimation procedure named fitA() as follows:

fitA <- function(x, y, ...) {
## create C-spline basis functions
x_mat <- cSpline(x, ..., Boundary.knots = c(0, 1), intercept = TRUE)
dx_mat <- cbind(0, 1, deriv(predict(x_mat, c(0, 1)))) # first derivatives
x_mat <- cbind("(Intercept)" = 1, "(Linear)" = x, x_mat) # matrix X
A1 <- cbind(c(1, rep(0, ncol(x_mat) - 1L)), 1) # matrix A_1
A2 <- cbind(dx_mat[1, ], dx_mat[2, ]) # matrix A_2
A3 <- rbind(0, 0, diag(ncol(x_mat) - 2)) # matrix A_3
A_mat <- cbind(A1, A2, A3) # all constraints
b0 <- c(1, 1, - 1, - 1, rep(0, ncol(A_mat) - 4)) # RHS of >=
d_vec <- crossprod(x_mat, y) # (zˆT X)ˆT
D_mat <- crossprod(x_mat) # XˆT X
res <- quadprog::solve.QP(D_mat, d_vec, A_mat, bvec = b0,

meq = 2) # first 2 restrictions are equalities
list(xt = x, coefficients = res$solution,

fitted = as.numeric(x_mat %*% res$solution))
}

For example, we constructed a non-exchangeable extreme-value copula by using Khoudraji’s
device (Khoudraji, 1995) khos(C1, C2) with shape vector s ∈ [0, 1]2 defined by

khos(C1, C2)(u) = C1(u
1−s)C2(u

s),

where C1 and C2 are two copulas, and uv = (u
v1
1 , u

v2
2 ) follows the elementwise definition for all

u, v ∈ [0, 1]2. We took C1 and C2 to be the independence copula � and the Gumbel–Hougaard
copula with parameter α = 4, respectively, which resulted in a non-exchangeable version of the
Gumbel-Hougaard copula by choosing s2 close to 1.

To demonstrate the usage of fitA() and to compare the fitted with the true Pickands
dependence function AKGH

θ (t), we wrote two helper functions named kc() and getZ() to set
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some default values ((α, s2) = (4, 0.95)) when generating data from the bivariate Khoudraji–
Gumbel–Hougaard (KGH) family. We obtained the pairs of {(ti, zi)} with the package copula
(Hofert et al., 2020). The Pickands dependence function denoted by AKGH

θ (t) can be obtained by
applying the function A() of the package copula following Section 3.4.2 of Hofert et al. (2018).

library(copula)
kc <- function(s1, s2 = 0.95, alpha = 4) {

khoudrajiCopula(copula2 = gumbelCopula(alpha), shapes = c(s1, s2))
}
## Obtain the pairs of {(t_i, z_i)}
getZ <- function(dat) {

pseudo <- pobs(dat)
loguv <- rowSums(log(pseudo))
cvalue <- C.n(pseudo, pseudo)
data.frame(ti = log(pseudo[, 2]) / loguv, zi = log(cvalue) / loguv)

}

In the following code chunk, we considered two different settings where s1 = 0.4 or s1 = 0.8
was set, and simulated bivariate samples of size 500 in each setting. For each simulated dataset,
we calculated the pairs {(ti, zi)} and fitted convex regression splines from C-spline basis functions
of degrees of freedom 8, 12, and 16, respectively.

set.seed(1)
n <- 500
s1_vec <- c(0.4, 0.8)
dfs <- c(8, 12, 16)
plot_dat <- do.call(rbind, lapply(s1_vec, function(s1) {

kg <- kc(s1)
dat <- getZ(rCopula(n, kg))
dat$est <- A(kg, dat$ti)
dat$model <- "Truth"
dat2 <- do.call(rbind, lapply(dfs, function(df) {

Ahat <- with(dat, fitA(ti, zi, df = df))$fitted
data.frame(ti = dat$ti, zi = dat$zi, est = Ahat,

model = paste("C-splines: df =", df))
}))
out <- rbind(dat, dat2)
out$s1 <- s1
out

}))

The simulated pairs and the fitted curves are visualized in Figure 6, which also includes the
corresponding true Pickands dependence functions AKGH

θ (t) for comparison. The fitted curves of
different degrees of freedom are similar to one another, all reasonably close to AKGH

θ (t) whether
s1 = 0.4 or s1 = 0.8 for the simulated dataset. In addition, the plots visually confirm that the
fitted curves satisfy both the boundary constraints and curvature constraints as they should by
design.
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Figure 6: The Pickands dependence function of the bivariate Khoudraji–Gumbel–Hougaard cop-
ula for distinct values of shape parameter s1 and their estimates by C-splines of different degrees
of freedom. The dash-dotted lines in gray represent the boundary constraints.

5 Discussion
The shape-restricted splines are the main part of the functionalities provided by the package
splines2. Additional features that are not reviewed here include generalized Bernstein polyno-
mials, B-splines, natural cubic splines, and an Rcpp interface; see package vignettes for details.
The R interface of the main functions in splines2 follows that of the function bs() in the package
splines for consistency. The derivatives and integrals of the spline basis functions are handy in
applications when they are needed. The Rcpp interface allows direct access to the C++ imple-
mentation for R package developers. Flexible and powerful as the splines2 package is, it is the
users’ responsibility in practice to be aware of the applicability and limitations of the spline
basis functions. For example, for monotone regression in general, an intercept term needs to be
considered in addition to the I-spline basis functions. For a general regression problem without
shape constraints, C-splines should not be used without a good reason.

The efficiency of the splines2 package was compared with other packages for the same tasks.
We conducted micro-benchmarks to investigate the relative performance of our implementation
with the help of the package microbenchmark (Mersmann, 2019). The tasks were to evaluate
the B-splines (and their derivatives and integrals), Bernstein polynomials, natural cubic splines,
and periodic splines at a sequence of equally spaced points in [0, 1] with step size 0.001. The
boundary knots were set to be 0 and 1, respectively, and the internal knots were set to be
{0.1, . . . , 0.9} when they are applicable. The micro-benchmark results from 1000 replicates are
visualized in Figure 7. While the micro-benchmarks are by no means comprehensive, they suggest
the high efficiency of the implementation in splines2. For instance, the package ibs implements
the integral of the B-splines by directly following the recursive formula, while the implementation
in the package splines2 takes advantage of the local support property of B-splines. Consequently,
the function ibs::ibs() is much slower than the function splines2::ibs(), even though both
are based on C++ behind the scene.

We restricted our attention to implementations in R. There are of course similar implemen-
tations in other programming languages. For example, the modules scipy.signal and scipy.inter-
polate of Scipy of Python, and the Curve Fitting Toolbox of MATLAB provide B-splines func-
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Figure 7: Example micro-benchmark results for reference.

tionality. Detailed introduction and comparison to those implementations are beyond the scope
of this article.

Supplementary Material
We review the generalized Bernstein polynomials, B-splines, and Natural cubic splines imple-
mented in the package splines2 but not covered in the main text. We also provide the R code
that produced the micro-benchmark results.
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