Loan behavior modeling is crucial in financial engineering. In particular, predicting loan prepayment based on large-scale historical time series data of massive customers is challenging. Existing approaches, such as logistic regression or nonparametric regression, could only model the direct relationship between the features and the prepayments. Motivated by extracting the hidden states of loan behavior, we propose the smoothing spline state space (QuadS) model based on a hidden Markov model with varying transition and emission matrices modeled by smoothing splines. In contrast to existing methods, our method benefits from capturing the loans’ unobserved state transitions, which not only increases prediction performances but also provides more interpretability. The overall model is learned by EM algorithm iterations, and within each iteration, smoothing splines are fitted with penalized least squares. Simulation studies demonstrate the effectiveness of the proposed method. Furthermore, a real-world case study using loan data from the Federal National Mortgage Association illustrates the practical applicability of our model. The QuadS model not only provides reliable predictions but also uncovers meaningful, hidden behavior patterns that can offer valuable insights for the financial industry.
Abstract: In this article, we consider a model of time-varying volatility which generalizes the classical Black-Scholes model to include regime-switching properties. Specifically, the unobservable state variables for stock fluctuations are modeled by a Markov process, and the drift and volatility parameters take different values depending on the state of this hidden Markov process. We provide a closed-form formula for the arbitrage-free price of the European call option, when the hidden Markov process has finite number of states. Two simulation methods, the discrete diffusion method and the Markovian tree method, for computing the European call option price are presented for comparison.