Abstract: Copulas have recently emerged as practical methods for multivari ate modeling. To our knowledge, only a limited amount of work has been done to apply copula-based modeling in context analysis. In this study, we generalized Clayton copula under the appropriate weighted function. In some examples, bivariate distributions by using the weighted Clayton cop ula are generalized. Also the properties of generalized Clayton copula are provided. The Clayton copula and weighted Clayton model cannot be used for negative dependence. These have been used to study left tail depen dence. This property is stronger in weighted Clayton model with respect to ordinary Clayton copula. It will also be shown that the generalized Clayton copula is suitable for the probable modeling of the hydrology data.