Abstract: Multiple imputation under the multivariate normality assumption has often been regarded as a viable model-based approach in dealing with incomplete continuous data. Considering the fact that real data rarely conform with normality, there has been a growing attention to generalized classes of distributions that cover a broader range of skewness and elongation behavior compared to the normal distribution. In this regard, two recent works have shown that creating imputations under Fleishman’s power polynomials and the generalized lambda distribution may be a promising tool. In this article, essential distributional characteristics of these families are illustrated along with a description of how they can be used to create multiply imputed data sets. Furthermore, an application is presented using a data example from psychiatric research. Multiple imputation under these families that span most of the feasible area in the symmetry-peakedness plane appears to have substantial potential of capturing real missing-data trends that can be encountered in clinical practice.
Abstract: We introduce a new class of the slash distribution using folded normal distribution. The proposed model defined on non-negative measure ments extends the slashed half normal distribution and has higher kurtosis than the ordinary half normal distribution. We study the characterization and properties involving moments and some measures based on moments of this distribution. Finally, we illustrate the proposed model with a simulation study and a real application.