The generalized gamma model has been used in several applied areas such as engineering, economics and survival analysis. We provide an extension of this model called the transmuted generalized gamma distribution, which includes as special cases some lifetime distributions. The proposed density function can be represented as a mixture of generalized gamma densities. Some mathematical properties of the new model such as the moments, generating function, mean deviations and Bonferroni and Lorenz curves are provided. We estimate the model parameters using maximum likelihood. We prove that the proposed distribution can be a competitive model in lifetime applications by means of a real data set.
Providing a new distribution is always precious for statisticians. A new three parameter distribution called the gamma normal distribution is defined and studied. Various structural properties of the new distribution are derived, including some explicit expressions for the moments, quantile and generating functions, mean deviations, probability weighted moments and two types of entropy. We also investigate the order statistics and their moments. Maximum likelihood techniques are used to fit the new model and to show its potentiality by means of two examples of real data. Based on three criteria, the proposed distribution provides a better fit then the skew-normal distribution.
We introduce the four-parameter Kumaraswamy Gompertz distribution. We obtain the moments, generating and quantilefunctions, Shannon and Rényi entropies, mean deviations and Bonferroni and Lorenz curves. We provide a mixture representation for the density function of the order statistics. We discuss the estimation of the model parameters by maximum likelihood. We provide an application a real data set that illustrates the usefulness of the new model.
Abstract: The generalized gamma model has been used in several applied areas such as engineering, economics and survival analysis. We provide an extension of this model called the transmuted generalized gamma distribution, which includes as special cases some lifetime distributions. The proposed density function can be represented as a mixture of generalized gamma densities. Some mathematical properties of the new model such as the moments, generating function, mean deviations and Bonferroni and Lorenz curves are provided. We estimate the model parameters using maximum likelihood. We prove that the proposed distribution can be a competitive model in lifetime applications by means of a real data set.