The United States has a racial homeownership gap due to a legacy of historic inequality and discriminatory policies, but factors that contribute to the racial disparity in homeownership rates between White Americans and people of color have not been fully characterized. In order to alleviate this issue, policymakers need a better understanding of how risk factors affect the homeownership rates of racial and ethnic groups differently. In this study, data from several publicly available surveys, including the American Community Survey and United States Census, were leveraged in combination with statistical learning models to investigate potential factors related to homeownership rates across racial and ethnic categories, with a focus on how risk factors vary by race or ethnicity. Our models indicated that job availability for specific demographics, and specific regions of the United States were factors that affect homeownership rates in Black, Hispanic, and Asian populations in different ways. Based on the results of this study, it is recommended policymakers promote strategies to increase access to jobs for people of color (POC), such as vocational training and programs to reduce implicit bias in hiring practices. These interventions could ultimately increase homeownership rates for POC and be a step toward reducing the racial wealth gap.
Researchers and practitioners of many areas of knowledge frequently struggle with missing data. Missing data is a problem because almost all standard statistical methods assume that the information is complete. Consequently, missing value imputation offers a solution to this problem. The main contribution of this paper lies on the development of a random forest-based imputation method (TI-FS) that can handle any type of data, including high-dimensional data with nonlinear complex interactions. The premise behind the proposed scheme is that a variable can be imputed considering only those variables that are related to it using feature selection. This work compares the performance of the proposed scheme with other two imputation methods commonly used in literature: KNN and missForest. The results suggest that the proposed method can be useful in complex scenarios with categorical variables and a high volume of missing values, while reducing the amount of variables used and their corresponding preliminary imputations.