Abstract: The power law process (PLP) (i.e., the nonhomogeneous Poisson process with power intensity law) is perhaps the most widely used model for analyzing failure data from reliability growth studies. Statistical inferences and prediction analyses for the PLP with left-truncated data with classical methods were extensively studied by Yu et al. (2008) recently. However, the topics discussed in Yu et al. (2008) only included maximum likelihood estimates and confidence intervals for parameters of interest, hypothesis testing and goodness-of-fit test. In addition, the prediction limits of future failure times for failure-truncated case were also discussed. In this paper, with Bayesian method we consider seven totally different prediciton issues besides point estimates and prediction limits for xn+k. Specifically, we develop estimation and prediction methods for the PLP in the presence of left-truncated data by using the Bayesian method. Bayesian point and credible interval estimates for the parameters of interest are derived. We show how five single-sample and three two-sample issues are addressed by the proposed Bayesian method. Two real examples from an engine development program and a repairable system are used to illustrate the proposed methodologies.
The paper deals with robust ANCOVA when there are one or two covariates. Let Mj (Y |X) = β0j + β1j X1 + β2j X2 be some conditional measure of location associated with the random variable Y , given X, where β0j , β1j and β2j are unknown parameters. A basic goal is testing the hypothesis H0: M1(Y |X) = M2(Y |X). A classic ANCOVA method is aimed at addressing this goal, but it is well known that violating the underlying assumptions (normality, parallel regression lines and two types of homoscedasticity) create serious practical concerns. Methods are available for dealing with heteroscedasticity and nonnormality, and there are well-known techniques for controlling the probability of one or more Type I errors. But some practical concerns remain, which are reviewed in the paper. An alternative approach is suggested and found to have a distinct power advantage.