The Birnbaum-Saunders generalized t (BSGT) distribution is a very flflexible family of distributions that admits different degrees of skewness and kurtosis and includes some important special or limiting cases available in the literature, such as the Birnbaum-Saunders and BirnbaumSaunders t distributions. In this paper we provide a regression type model to the BSGT distribution based on the generalized additive models for location, scale and shape (GAMLSS) framework. The resulting model has high flflexibility and therefore a great potential to model the distribution parameters of response variables that present light or heavy tails, i.e. platykurtic or leptokurtic shapes, as functions of explanatory variables. For different parameter settings, some simulations are performed to investigate the behavior of the estimators. The potentiality of the new regression model is illustrated by means of a real motor vehicle insurance data set.
With multiple components and relations, financial data are often presented as graph data, since it could represent both the individual features and the complicated relations. Due to the complexity and volatility of the financial market, the graph constructed on the financial data is often heterogeneous or time-varying, which imposes challenges on modeling technology. Among the graph modeling technologies, graph neural network (GNN) models are able to handle the complex graph structure and achieve great performance and thus could be used to solve financial tasks. In this work, we provide a comprehensive review of GNN models in recent financial context. We first categorize the commonly-used financial graphs and summarize the feature processing step for each node. Then we summarize the GNN methodology for each graph type, application in each area, and propose some potential research areas.