A technique is proposed to estimate the conception rate using the distribution of first birth interval of recently married women. The proposed technique adjusts the truncation and selection effects present in a crosssectional data. Real data from NFHS-3 and NFHS-4 are used for illustration.
Abstract: Good inference for the random effects in a linear mixed-effects model is important because of their role in decision making. For example, estimates of the random effects may be used to make decisions about the quality of medical providers such as hospitals, surgeons, etc. Standard methods assume that the random effects are normally distributed, but this may be problematic because inferences are sensitive to this assumption and to the composition of the study sample. We investigate whether using a Dirichlet process prior instead of a normal prior for the random effects is effective in reducing the dependence of inferences on the study sample. Specifically, we compare the two models, normal and Dirichlet process, emphasizing inferences for extrema. Our main finding is that using the Dirichlet process prior provides inferences that are substantially more robust to the composition of the study sample.
Abstract: In the absence of definitive trials on the safety and efficacy of drugs, a systematic and careful synthesis of available data may provide critical information to help decision making by policy makers, medical professionals, patients and other stakeholders. However, uncritical and unbalanced use of pooled data to inform decision about important healthcare issues may have consequences that adversely impact public health, stifle innovation, and con found medical science. In this paper, we highlight current methodological issues and discuss advantages and disadvantages of alternative meta-analytic techniques. It is argued that results from pooled data analysis would have maximal reliability and usefulness in decision making if used in a holistic framework that includes presentation of data in light of all available knowledge and effective collaboration among academia, industry, regulatory bodies and other stakeholders.