Abstract: Ranked set sampling and some of its variants have been applied successfully in different areas of applications such as industrial statistics, economics, environmental and ecological studies, biostatistics, and statistical genetics. Ranked set sampling is a sampling method that more efficient than simple random sampling. Also, it is well known that Fisher information of a ranked set sample (RSS) is larger than Fisher information of a simple random sample (SRS) of the same size about the unknown parameter of the underlying distribution in parametric inference. In this paper, we consider the Farlie-Gumbel-Morgenstern (FGM) family and study the information measures such as Shannon’s entropy, Rényi entropy, mutual information, and Kullback-Leibler (KL) information of RSS data. Also, we investigate their properties and compare them with a SRS data.
The concept of ranked set sampling (RSS) is applicable whenever ranking on a set of sampling units can be done easily by a judgment method or based on an auxiliary variable. In this work, we consider a study variable 𝑌 correlated with auxiliary variable 𝑋 which is used to rank the sampling units. Further (𝑋, 𝑌) is assumed to have Morgenstern type bivariate generalized uniform distribution. We obtain an unbiased estimator of a scale parameter associated with the study variable 𝑌 based on different RSS schemes and censored RSS. Efficiency comparison study of these estimators is also performed and presented numerically.
Abstract: In this paper, we obtain several estimators of a scale parameter of Morgenstern type bivariate uniform distribution (MTBUD) based on the observations made on the units of the ranked set sampling regarding the study variable Y which is correlated with the auxiliary variable X, when (X, Y ) follows a MTBUD. Efficiency comparisons among these estimators are also made in this work. Finally, we illustrate the methods developed by using a real data set.