Longitudinal data analysis had been widely developed in the past three decades. Longitudinal data are common in many fields such as public health, medicine, biological and social sciences. Longitudinal data have special nature as the individual may be observed during a long period of time. Hence, missing values are common in longitudinal data. The presence of missing values leads to biased results and complicates the analysis. The missing values have two patterns: intermittent and dropout. The missing data mechanisms are missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). The appropriate analysis relies heavily on the assumed mechanism and pattern. The parametric fractional imputation is developed to handle longitudinal data with intermittent missing pattern. The maximum likelihood estimates are obtained and the Jackkife method is used to obtain the standard errors of the parameters estimates. Finally a simulation study is conducted to validate the proposed approach. Also, the proposed approach is applied to a real data.