Pub. online:4 Aug 2022Type:Research ArticleOpen Access
Journal:Journal of Data Science
Volume 18, Issue 5 (2020): Special Issue S1 in Chinese (with abstract in English), pp. 907–921
Abstract
The Corona Virus Disease 2019 (COVID-19) emerged in Wuhan, China in December 2019. In order to control the epidemic, the Chinese government adopted several public health measures. To study the influence of these measures on the transmissibility of COVID-19 in the city of Wuhan and other cities in the Hubei province, China, we establish generalized semi-varying coefficient models for the number of new diagnosed cases and estimate the varying coefficient for the covariates by the spline method. Since the pandemic was most severe in Wuhan, we fitted separate models for Wuhan and the remaining 16 cities in Hubei. Estimators for the incubation periods, the real-time transmission rates, and the real-time reproduction numbers were obtained. The results demonstrate that the changes in the real-time transmission rate in Wuhan and other cities in Hubei are almost simultaneous. Futher, public health interventions such as restriction of traffic, adjustment of the diagnosed standard, deployment of medical resources, and improvement of nucleic acid testing capacity, had positive effects on reducing the transmission of COVID-19.
Pub. online:4 Aug 2022Type:Research ArticleOpen Access
Journal:Journal of Data Science
Volume 18, Issue 3 (2020): Special issue: Data Science in Action in Response to the Outbreak of COVID-19, pp. 526–535
Abstract
COVID-19 is a disease caused by the severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) that was reported to spread in people in December 2019. Understanding epidemiological
features of COVID-19 is important for the ongoing global efforts to contain the virus. As a
complement to the available work, in this article we analyze the Kaggle novel coronavirus dataset
of 3397 patients dated from January 22, 2020 to March 29, 2020. We employ semiparametric
and nonparametric survival models as well as text mining and data visualization techniques to
examine the clinical manifestations and epidemiological features of COVID-19. Our analysis
shows that: (i) the median incubation time is about 5 days and older people tend to have a
longer incubation period; (ii) the median time for infected people to recover is about 20 days,
and the recovery time is significantly associated with age but not gender; (iii) the fatality rate
is higher for older infected patients than for younger patients