istribution of Lindley distribution constructed by combining the cumulative distribution function (cdf) of Lomax and Lindley distributions. Some mathematical properties of the new distribution are discussed including moments, quantile and moment generating function. Estimation of the model parameters is carried out using maximum likelihood method. Finally, real data examples are presented to illustrate the usefulness and applicability of this new distribution.
The generalized gamma model has been used in several applied areas such as engineering, economics and survival analysis. We provide an extension of this model called the transmuted generalized gamma distribution, which includes as special cases some lifetime distributions. The proposed density function can be represented as a mixture of generalized gamma densities. Some mathematical properties of the new model such as the moments, generating function, mean deviations and Bonferroni and Lorenz curves are provided. We estimate the model parameters using maximum likelihood. We prove that the proposed distribution can be a competitive model in lifetime applications by means of a real data set.
In this paper, a new version of the Poisson Lomax distributions is proposed and studied. The new density is expressed as a linear mixture of the Lomax densities. The failure rate function of the new model can be increasing-constant, increasing, U shape, decreasing and upside down-increasing. The statistical properties are derived and four applications are provided to illustrate the importance of the new density. The method of maximum likelihood is used to estimate the unknown parameters of the new density. Adequate fitting is provided by the new model.
Abstract: The generalized gamma model has been used in several applied areas such as engineering, economics and survival analysis. We provide an extension of this model called the transmuted generalized gamma distribution, which includes as special cases some lifetime distributions. The proposed density function can be represented as a mixture of generalized gamma densities. Some mathematical properties of the new model such as the moments, generating function, mean deviations and Bonferroni and Lorenz curves are provided. We estimate the model parameters using maximum likelihood. We prove that the proposed distribution can be a competitive model in lifetime applications by means of a real data set.