Mediation analysis plays an important role in many research fields, yet it is very challenging to perform estimation and hypothesis testing for high-dimensional mediation effects. We develop a user-friendly $\mathsf{R}$ package HIMA for high-dimensional mediation analysis with varying mediator and outcome specifications. The HIMA package is a comprehensive tool that accommodates various types of high-dimensional mediation models. This paper offers an overview of the functions within HIMA and demonstrates the practical utility of HIMA through simulated datasets. The HIMA package is publicly available from the Comprehensive $\mathsf{R}$ Archive Network at https://CRAN.R-project.org/package=HIMA.
Cellular deconvolution is a key approach to deciphering the complex cellular makeup of tissues by inferring the composition of cell types from bulk data. Traditionally, deconvolution methods have focused on a single molecular modality, relying either on RNA sequencing (RNA-seq) to capture gene expression or on DNA methylation (DNAm) to reveal epigenetic profiles. While these single-modality approaches have provided important insights, they often lack the depth needed to fully understand the intricacies of cellular compositions, especially in complex tissues. To address these limitations, we introduce EMixed, a versatile framework designed for both single-modality and multi-omics cellular deconvolution. EMixed models raw RNA counts and DNAm counts or frequencies via allocation models that assign RNA transcripts and DNAm reads to cell types, and uses an expectation-maximization (EM) algorithm to estimate parameters. Benchmarking results demonstrate that EMixed significantly outperforms existing methods across both single-modality and multi-modality applications, underscoring the broad utility of this approach in enhancing our understanding of cellular heterogeneity.