Heart rate data collected from wearable devices – one type of time series data – could provide insights into activities, stress levels, and health. Yet, consecutive missing segments (i.e., gaps) that commonly occur due to improper device placement or device malfunction could distort the temporal patterns inherent in the data and undermine the validity of downstream analyses. This study proposes an innovative iterative procedure to fill gaps in time series data that capitalizes on the denoising capability of Singular Spectrum Analysis (SSA) and eliminates SSA’s requirement of pre-specifying the window length and number of groups. The results of simulations demonstrate that the performance of SSA-based gap-filling methods depends on the choice of window length, number of groups, and the percentage of missing values. In contrast, the proposed method consistently achieves the lowest rates of reconstruction error and gap-filling error across a variety of combinations of the factors manipulated in the simulations. The simulation findings also highlight that the commonly recommended long window length – half of the time series length – may not apply to time series with varying frequencies such as heart rate data. The initialization step of the proposed method that involves a large window length and the first four singular values in the iterative singular value decomposition process not only avoids convergence issues but also facilitates imputation accuracy in subsequent iterations. The proposed method provides the flexibility for researchers to conduct gap-filling solely or in combination with denoising on time series data and thus widens the applications.