In this article, the maximum likelihood estimators of the k independent exponential populations parameters are obtained based on joint progressive type- I censored (JPC-I) scheme. The Bayes estimators are also obtained by considering three different loss functions. The approximate confidence, two Bootstrap confidence and the Bayes credible intervals for the unknown parameters are discussed. A simulated and real data sets are analyzed to illustrate the theoretical results.
In this paper, maximum likelihood and Bayesian methods of estimation are used to estimate the unknown parameters of two Weibull populations with the same shape parameter under joint progressive Type-I (JPT-I) censoring scheme. Bayes estimates of the parameters are obtained based on squared error and LINEX loss functions under the assumption of independent gamma priors. We propose to apply Markov Chain Monte Carlo (MCMC) technique to carry out a Bayesian estimation procedure. The approximate confidence intervals and the credible intervals for the unknown parameters are also obtained. Finally, we analyze a one real data set for illustration purpose.