Dr. David S. Salsburg’s career has been an exceptional one. He was the first statistician to work in Pfizer, Inc., and later became the first statistician from the pharmaceutical industry to be elected as an ASA fellow. He played a vital role as a statistician in Pfizer, Inc. at a time when the drug approval process was developed. For his contributions, Dr. Salsburg was awarded the Career Achievement Award of the Biostatistics Section of the Pharmaceutical Research and Manufacturers of America in 1994, for “significant contributions to the advancement of biostatistics in the pharmaceutical industry”. Dr. Salsburg also managed to achieve something rare among scientists, which is to popularize his field of research and make it accessible and enjoyable to laypeople. Dr. Salsburg is possibly best known for his book “The Lady Tasting Tea – How Statistics Revolutionized the 20th Century Science”, in which he combines simple and engaging explanations of statistical methods, and why they are needed, along with personal stories told with a great deal of generosity, fondness, and humor about the people who developed them. Dr. Salsburg’s admiration for the those statisticians shines through. In this interview, Dr. Salsburg shares his own stories and perspectives, from his childhood, through his service in the Navy and his long and productive career in Pfizer, Inc. to his equally productive retirement, in which he authored “The Lady Tasting Tea” and other books.
The ultrasonic testing has been considered a promising method for diagnosing and characterizing masonry walls. As ultrasonic waves tend to travel faster in denser materials, their use is common in evaluating the conditions of various materials. Presence of internal voids, e.g., would alter the wave path, and this distinct behavior could be employed to identify unknown conditions within the material, allowing for the assessment of its condition. Therefore, we applied mixed models and Gaussian processes to analyze the behavior of ultrasonic waves on masonry walls and identify relevant factors impacting their propagation. We observed that the average propagation time behavior differs depending on the material for both models. Additionally, the condition of the wall influences the propagation time. Gaussian process and mixed model performances are compared, and we conclude that these models can be useful in a classification model to automatically identify anomalies within masonry walls.
In 2022 the American Statistical Association established the Riffenburgh Award, which recognizes exceptional innovation in extending statistical methods across diverse fields. Simultaneously, the Department of Statistics at the University of Connecticut proudly commemorated six decades of excellence, having evolved into a preeminent hub for academic, industrial, and governmental statistical grooming. To honor this legacy, a captivating virtual dialogue was conducted with the department’s visionary founder, Dr. Robert H. Riffenburgh, delving into his extraordinary career trajectory, profound insights into the statistical vocation, and heartfelt accounts from the faculty and students he personally nurtured. This multifaceted narrative documents the conversation with more detailed background information on each topic covered by the interview than what is presented in the video recording on YouTube.