Pub. online:25 Jul 2023Type:Computing In Data ScienceOpen Access
Journal:Journal of Data Science
Volume 21, Issue 3 (2023): Special Issue: Advances in Network Data Science, pp. 538–556
Abstract
Preferential attachment (PA) network models have a wide range of applications in various scientific disciplines. Efficient generation of large-scale PA networks helps uncover their structural properties and facilitate the development of associated analytical methodologies. Existing software packages only provide limited functions for this purpose with restricted configurations and efficiency. We present a generic, user-friendly implementation of weighted, directed PA network generation with R package wdnet. The core algorithm is based on an efficient binary tree approach. The package further allows adding multiple edges at a time, heterogeneous reciprocal edges, and user-specified preference functions. The engine under the hood is implemented in C++. Usages of the package are illustrated with detailed explanation. A benchmark study shows that wdnet is efficient for generating general PA networks not available in other packages. In restricted settings that can be handled by existing packages, wdnet provides comparable efficiency.