The so-called Kumaraswamy distribution is a special probability distribution developed to model doubled bounded random processes for which the mode do not necessarily have to be within the bounds. In this article, a generalization of the Kumaraswamy distribution called the T-Kumaraswamy family is defined using the T-R {Y} family of distributions framework. The resulting T-Kumaraswamy family is obtained using the quantile functions of some standardized distributions. Some general mathematical properties of the new family are studied. Five new generalized Kumaraswamy distributions are proposed using the T-Kumaraswamy method. Real data sets are further used to test the applicability of the new family.
In this paper, kumaraswamy reciprocal family of distributions is introduced as a new continues model with some of approximation to other probabilistic models as reciprocal, beta, uniform, power function, exponential, negative exponential, weibull, rayleigh and pareto distribution. Some fundamental distributional properties, force of mortality, mills ratio, bowley skewness, moors kurtosis, reversed hazard function, integrated hazard function, mean residual life, probability weighted moments, bonferroni and lorenz curves, laplace-stieltjes transform of this new distribution with the maximum likelihood method of the parameter estimation are studied. Finally, four real data sets originally presented are used to illustrate the proposed estimators.