Detecting illicit transactions in Anti-Money Laundering (AML) systems remains a significant challenge due to class imbalances and the complexity of financial networks. This study introduces the Multiple Aggregations for Graph Isomorphism Network with Custom Edges (MAGIC) convolution, an enhancement of the Graph Isomorphism Network (GIN) designed to improve the detection of illicit transactions in AML systems. MAGIC integrates edge convolution (GINE Conv) and multiple learnable aggregations, allowing for varied embedding sizes and increased generalization capabilities. Experiments were conducted using synthetic datasets, which simulate real-world transactions, following the experimental setup of previous studies to ensure comparability. MAGIC, when combined with XGBoost as a link predictor, outperformed existing models in 16 out of 24 metrics, with notable improvements in F1 scores and precision. In the most imbalanced dataset, MAGIC achieved an F1 score of 82.6% and a precision of 90.4% for the illicit class. While MAGIC demonstrated high precision, its recall was lower or comparable to the other models, indicating potential areas for future enhancement. Overall, MAGIC presents a robust approach to AML detection, particularly in scenarios where precision and overall quality are critical. Future research should focus on optimizing the model’s recall, potentially by incorporating additional regularization techniques or advanced sampling methods. Additionally, exploring the integration of foundation models like GraphAny could further enhance the model’s applicability in diverse AML environments.
With multiple components and relations, financial data are often presented as graph data, since it could represent both the individual features and the complicated relations. Due to the complexity and volatility of the financial market, the graph constructed on the financial data is often heterogeneous or time-varying, which imposes challenges on modeling technology. Among the graph modeling technologies, graph neural network (GNN) models are able to handle the complex graph structure and achieve great performance and thus could be used to solve financial tasks. In this work, we provide a comprehensive review of GNN models in recent financial context. We first categorize the commonly-used financial graphs and summarize the feature processing step for each node. Then we summarize the GNN methodology for each graph type, application in each area, and propose some potential research areas.