Pub. online:7 Aug 2024Type:Data Science In ActionOpen Access
Journal:Journal of Data Science
Volume 22, Issue 3 (2024): Special issue: The Government Advances in Statistical Programming (GASP) 2023 conference, pp. 409–422
Abstract
The North American Product Classification System (NAPCS) was first introduced in the 2017 Economic Census and provides greater detail on the range of products and services offered by businesses than what was previously available with just an industry code. In the 2022 Economic Census, NAPCS consisted of 7,234 codes and respondents often found that they were unable to identify correct NAPCS codes for their business, leaving instead written descriptions of their products and services. Over one million of these needed to be reviewed by Census analysts in the 2017 Economic Census. The Smart Instrument NAPCS Classification Tool (SINCT) offers respondents a low latency search engine to find appropriate NAPCS codes based on a written description of their products and services. SINCT uses a neural network document embedding model (doc2vec) to embed respondent searches in a numerical space and then identifies NAPCS codes that are close to the search text. This paper shows one way in which machine learning can improve the survey respondent experience and reduce the amount of expensive manual processing that is necessary after data collection. We also show how relatively simple tools can achieve an estimated 72% top-ten accuracy with thousands of possible classes, limited training data, and strict latency requirements.
There has been increasing interest in modeling survival data using deep learning methods in medical research. In this paper, we proposed a Bayesian hierarchical deep neural networks model for modeling and prediction of survival data. Compared with previously studied methods, the new proposal can provide not only point estimate of survival probability but also quantification of the corresponding uncertainty, which can be of crucial importance in predictive modeling and subsequent decision making. The favorable statistical properties of point and uncertainty estimates were demonstrated by simulation studies and real data analysis. The Python code implementing the proposed approach was provided.