Journal:Journal of Data Science
Volume 19, Issue 2 (2021): Special issue: Continued Data Science Contributions to COVID-19 Pandemic, pp. 178–196
Abstract
The United States has the highest numbers of confirmed cases of COVID-19 in the world. The early hot spot states were New York, New Jersey, and Connecticut. The workforce in these states was required to work from home except for essential services. It was necessary to evaluate an appropriate date for resumption of business since the premature reopening of the economy would lead to a broader spread of COVID-19, while the opposite situation would cause greater loss of economy. To reflect the real-time risk of the spread of COVID-19, it was crucial to evaluate the population of infected individuals before or never being confirmed due to the pre-symptomatic and asymptomatic transmissions of COVID-19. To this end, we proposed an epidemic model and applied it to evaluate the real-time risk of epidemic for the states of New York, New Jersey, and Connecticut. We used California as the benchmark state because California began a phased reopening on May 8, 2020. The dates on which the estimated numbers of unidentified infectious individuals per 100,000 for states of New York, New Jersey, and Connecticut were close to those in California on May 8, 2020, were June 1, 22, and 22, 2020, respectively. By the practice in California, New York, New Jersey, and Connecticut might consider reopening their business. Meanwhile, according to our simulation models, to prevent resurgence of infections after reopening the economy, it would be crucial to maintain sufficient measures to limit the social distance after the resumption of businesses. This precaution turned out to be critical as the situation in California quickly deteriorated after our analysis was completed and its interventions after the reopening of business were not as effective as those in New York, New Jersey, and Connecticut.