In this article, a new family of lifetime distributions by adding an additional parameter to the existing distributions is introduced. The new family is called, the extended alpha power transformed family of distributions. For the proposed family, explicit expressions for some mathematical properties along with estimation of parameters through Maximum likelihood Method are discussed. A special sub-model, called the extended alpha power transformed Weibull distribution is considered in detail. The proposed model is very flexible and can be used to model data with increasing, decreasing or bathtub shaped hazard rates. To access the behavior of the model parameters, a small simulation study has also been carried out. For the new family, some useful characterizations are also presented. Finally, the potentiality of the proposed method is showen via analyzing two real data sets taken from reliability engineering and bio-medical fields.
The Topp-Leone distribution is an attractive model for life testing and reliability studies as it acquires a bathtub shaped hazard function. In this paper, we introduce a new family of distributions, depending on Topp–Leone random variable as a generator, called the Type II generalized Topp– Leone–G (TIIGTL-G) family. Its density function can be unimodel, leftskewed, right-skewed, and reversed-J shaped, and has increasing, decreasing, upside-down, J and reversed-J hazard rates. Some special models are presented. Some of its statistical properties are studied. Explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Rényi entropy and order statistics are derived. The method of maximum likelihood is used to estimate the model parameters. The importance of one special model; namely; the Type II generalized Topp–Leone exponential is illustrated through two real data sets.