In this paper, we introduce a new family of continuous distributions called the transmuted Topp-Leone G family which extends the transmuted class pioneered by Shaw and Buckley (2007). Some of its mathematical properties including probability weighted moments, mo- ments, generating functions, order statistics, incomplete moments, mean deviations, stress- strength model, moment of residual and reversed residual life are studied. Some useful char- acterizations results based on two truncated moments as well as based on hazard function are presented. The maximum likelihood method is used to estimate its parameters. The Monte Carlo simulation is used for assessing the performance of the maximum likelihood estimators. The usefulness of the new model is illustrated by means of two real data set.
One of the key features in regression models consists in selecting appropriate characteristics that explain the behavior of the response variable, in which stepwise-based procedures occupy a prominent position. In this paper we performed several simulation studies to investigate whether a specific stepwise-based approach, namely Strategy A, properly selects authentic variables into the generalized additive models for location, scale and shape framework, considering Gaussian, zero inflated Poisson and Weibull distributions. Continuous (with linear and nonlinear relationships) and categorical explanatory variables are considered and they are selected through some goodness-of-fit statistics. Overall, we conclude that the Strategy A greatly performed.