Classification is an important statistical tool that has increased its importance since the emergence of the data science revolution. However, a training data set that does not capture all underlying population subgroups (or clusters) will result in biased estimates or misclassification. In this paper, we introduce a statistical and computational solution to a possible bias in classification when implemented on estimated population clusters. An unseen-cluster problem denotes the case in which the training data does not contain all underlying clusters in the population. Such a scenario may occur due to various reasons, such as sampling errors, selection bias, or emerging and disappearing population clusters. Once an unseen-cluster problem occurs, a testing observation will be misclassified because a classification rule based on the sample cannot capture a cluster not observed in the training data (sample). To overcome such issues, we suggest a two-stage classification method to ameliorate the unseen-cluster problem in classification. We suggest a test to identify the unseen-cluster problem and demonstrate the performance of the two-stage tailored classifier using simulations and a public data example.
Abstract: Latent class analysis (LCA) is a popular method for analyzing multiple categorical outcomes. Given the potential for LCA model assump tions to influence inference, model diagnostics are a particulary important part of LCA. We suggest using the rate of missing information as an addi tional diagnostic tool. The rate of missing information gives an indication of the amount of information missing as a result of observing multiple sur rogates in place of the underlying latent variable of interest and provides a measure of how confident one can be in the model results. Simulation studies and real data examples are presented to explore the usefulness of the proposed measure.