Abstract: While conducting a social survey on stigmatized/sensitive traits, obtaining efficient (truthful) data is an intricate issue and estimates are generally biased in such surveys. To obtain trustworthy data and to reduce false response bias, a technique, known as randomized response technique, is now being used in many surveys. In this study, we performed a Bayesian analysis of a general class of randomized response models. Suitable simple Beta prior and mixture of Beta priors are used in a common prior structure to obtain the Bayes estimates for the proportion of a stigmatized/sensitive attributes in the population of interest. We also extended our proposal to stratified random sampling. The Bayes and the maximum likelihood estimators are compared. For further understanding of variability, we have also compared the prior and posterior distributions for different values of the design constants through graphs and credible intervals. The condition to develop a new randomized response model is also discussed.