The complexity of energy infrastructure at large institutions increasingly calls for data-driven monitoring of energy usage. This article presents a hybrid monitoring algorithm for detecting consumption surges using statistical hypothesis testing, leveraging the posterior distribution and its information about uncertainty to introduce randomness in the parameter estimates, while retaining the frequentist testing framework. This hybrid approach is designed to be asymptotically equivalent to the Neyman-Pearson test. We show via extensive simulation studies that the hybrid approach enjoys control over type-1 error rate even with finite sample sizes whereas the naive plug-in method tends to exceed the specified level, resulting in overpowered tests. The proposed method is applied to the natural gas usage data at the University of Connecticut.
Journal:Journal of Data Science
Volume 19, Issue 2 (2021): Special issue: Continued Data Science Contributions to COVID-19 Pandemic, pp. 269–292
Abstract
This article develops nonlinear functional forms for modeling count time series of daily deaths due to the COVID-19 virus. Our models explain the mean levels of the time series while accounting for the time-varying variances. A Bayesian approach using Markov chain Monte Carlo (MCMC) is adopted for analysis, inference and forecasting of the time series under the proposed models. Applications are shown for time series of death counts from several countries affected by the pandemic.