Abstract: Mixture of Weibull distributions has wide application in modeling of heterogeneous data sets. The parameter estimation is one of the most important problems related to mixture of Weibull distributions. In this pa per, we propose a L-moment estimation method for mixture of two Weibull distributions. The proposed method is compared with maximum likelihood estimation (MLE) method according to the bias, the mean absolute error, the mean total error and completion time of the algorithm (time) by sim ulation study. Also, applications to real data sets are given to show the flexibility and potentiality of the proposed estimation method. The com parison shows that, the proposed method is better than MLE method.
Abstract: Identifying influential observations is an important part of the model building process in linear regression. There are numerous diagnostic measures based on different approaches in linear regression analysis. However, the problem of multicollinearity and influential observations may occur simultaneously. Therefore, we propose new diagnostic measures based on the two parameter ridge estimator defined by Lipovetsky and Conklin (2005) alternative to the usual ridge regression and ordinary linear regression. We define two parameter ridge-type generalizations of DFFITS and Cook’s distance. Moreover, we obtain approximate case deletion formulas and provide approximate versions of new measures. Finally, we illustrate the benefits of proposed measures in real data examples.