In this paper we use the maximum likelihood (ML) and the modified maximum likelihood (MML) methods to estimate the unknown parameters of the inverse Weibull (IW) distribution as well as the corresponding approximate confidence intervals. The estimates of the unknown parameters are obtained based on two sampling schemes, namely, simple random sampling (SRS) and ranked set sampling (RSS). Comparison between the different proposed estimators is made through simulation via their mean square errors (MSE), Pitman nearness probability (PN) and confidence length.
In this article, the maximum likelihood estimators of the k independent exponential populations parameters are obtained based on joint progressive type- I censored (JPC-I) scheme. The Bayes estimators are also obtained by considering three different loss functions. The approximate confidence, two Bootstrap confidence and the Bayes credible intervals for the unknown parameters are discussed. A simulated and real data sets are analyzed to illustrate the theoretical results.