A joint equivalence and difference (JED) test is needed because difference tests and equivalence (more exactly, similarity) tests each provide only a one-sided answer. The concept and underlying theory have appeared numerous times, noted and discussed here, but never in a form usable in workaday statistical applications. This work provides such a form as a straightforward simple test with a step-by-step guide and possible interpretations and formulas. For initial treatment, it restricts attention to a t test of two means. The guide is illustrated by a numerical example from the field of orthopedics. To assess the quality of the JED test, its sensitivity and specificity are examined for test outcomes depending on error risk α, total sample size, sub-sample size ratio, and variability ratio. These results are shown in tables. Interpretations are discussed. It is concluded that the test exhibits high power and effect size and that only quite small samples show any effect on the power or effect size of the JED test by commonly seen values of any of the parameters. Data for the example and computer codes for using the JED test are accessible through links to supplementary material. We recommend that this work be extended to other test forms and multivariate forms.