In this article, we introduce a class of distributions that have heavy tails as compared to Pareto distribution of third kind, which we termed as Heavy Tailed Pareto (HP) distribution. Various structural properties of the new distribution are derived. It is shown that HP distribution is in the domain of attraction of minimum of Weibull distribution. A representation of HP distribution in terms of Weibull random variable is obtained. Two characterizations of HP distribution are obtained. The method of maximum likelihood is used for estimation of model parameters and simulation results are presented to assess the performance of new model. Marshall-Olkin Heavy Tailed Pareto (MOHP) distribution is also introduced and some of its properties are studied. It is shown that MOHP distribution is geometric extreme stable. An autoregressive time series model with the new model as marginal distribution is developed and its properties are studied.
We introduce a new family of distributions namely inverse truncated discrete Linnik G family of distributions. This family is a generalization of inverse Marshall-Olkin family of distributions, inverse family of distributions generated through truncated negative binomial distribution and inverse family of distributions generated through truncated discrete Mittag-Leffler distribution. A particular member of the family, inverse truncated negative binomial Weibull distribution is studied in detail. The shape properties of the probability density function and hazard rate, model identifiability, moments, median, mean deviation, entropy, distribution of order statistics, stochastic ordering property, mean residual life function and stress-strength properties of the new generalized inverse Weibull distribution are studied. The unknown parameters of the distribution are estimated using maximum likelihood method, product spacing method and least square method. The existence and uniqueness of the maximum likelihood estimates are proved. Simulation is carried out to illustrate the performance of maximum likelihood estimates of model parameters. An AR(1) minification model with this distribution as marginal is developed. The inverse truncated negative binomial Weibull distribution is fitted to a real data set and it is shown that the distribution is more appropriate for modeling in comparison with some other competitive models.