Pub. online:24 May 2024Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 22, Issue 2 (2024): Special Issue: 2023 Symposium on Data Science and Statistics (SDSS): “Inquire, Investigate, Implement, Innovate”, pp. 221–238
Abstract
One measurement modality for rainfall is a fixed location rain gauge. However, extreme rainfall, flooding, and other climate extremes often occur at larger spatial scales and affect more than one location in a community. For example, in 2017 Hurricane Harvey impacted all of Houston and the surrounding region causing widespread flooding. Flood risk modeling requires understanding of rainfall for hydrologic regions, which may contain one or more rain gauges. Further, policy changes to address the risks and damages of natural hazards such as severe flooding are usually made at the community/neighborhood level or higher geo-spatial scale. Therefore, spatial-temporal methods which convert results from one spatial scale to another are especially useful in applications for evolving environmental extremes. We develop a point-to-area random effects (PARE) modeling strategy for understanding spatial-temporal extreme values at the areal level, when the core information are time series at point locations distributed over the region.