Abstract: In this paper we introduce a Bayesian analysis of a spherical distri bution applied to rock joint orientation data in presence or not of a vector of covariates, where the response variable is given by the angle from the mean and the covariates are the components of the normal upwards vector. Standard simulation MCMC (Markov Chain Monte Carlo) methods have been used to obtain the posterior summaries of interest obtained from Win Bugs software. Illustration of the proposed methodology are given using a simulated data set and a real rock spherical data set from a hydroelectrical site.
Abstract: In this paper, we introduce a Bayesian analysis for bivariate geometric distributions applied to lifetime data in the presence of covariates, censored data and cure fraction using Markov Chain Monte Carlo (MCMC) methods. We show that the use of a discrete bivariate geometric distribution could bring us some computational advantages when compared to standard existing bivariate exponential lifetime distributions introduced in the literature assuming continuous lifetime data as for example, the exponential Block and Basu bivariate distribution. Posterior summaries of interest are obtained using the popular OpenBUGS software. A numerical illustration is introduced considering a medical data set related to the analysis of a diabetic retinopathy data set.
Abstract: Simulation studies are important statistical tools used to inves-tigate the performance, properties and adequacy of statistical models. The simulation of right censored time-to-event data involves the generation of two independent survival distributions, where the rst distribution repre-sents the uncensored survival times and the second distribution represents the censoring mechanism. In this brief report we discuss how we can make it so that the percentage of censored data is previously de ned. The described method was used to generate data from a Weibull distribution, but it can be adapted to any other lifetime distribution. We further presented an R code function for generating random samples, considering the proposed approach.
Abstract: Breast cancer is the second most common type of cancer in the world (World Cancer Report, 2014 a, b). The evolution of breast cancer treatment usually allows a longer life of patients as well in many cases a relapse of the disease. Usually medical researchers are interested to analyze data denoting the time until the occurrence of an event of interest such as the time of death by cancer in presence of right censored data and some covariates. In some situations, we could have two lifetimes associated to the same patient, as for example, the time free of the disease until recurrence and the total lifetime of the patient. In this case, it is important to assume a bivariate lifetime distribution which describes the possible dependence between the two observations. We consider as an application, different parametric bivariate lifetime distributions to analyze a breast cancer data set considering continuous or discrete data. Inferences of interest are obtained under a statistical Bayesian approach. We get the posterior summaries of interest using existing MCMC (Markov Chain Monte Carlo) methods. The main goal of the study, is to compare the bivariate continuous and discrete distributions that better describes the breast cancer lifetimes.
The choice of an appropriate bivariate parametrical probability distribution for pairs of lifetime data in presence of censored observations usually is not a simple task in many applications. Each existing bivariate lifetime probability distribution proposed in the literature has different dependence structure. Commonly existing classical or Bayesian discrimination methods could be used to discriminate the best among different proposed distributions, but these techniques could not be appropriate to say that we have good fit of some particular model to the data set. In this paper, we explore a recent dependence measure for bivariate data introduced in the literature to propose a graphical and simple criterion to choose an appropriate bivariate lifetime distribution for data in presence of censored data.
Abstract: In this paper we introduce bivariate Weibull distributions derived from copula functions in presence of cure fraction, censored data and covariates. Two copla functions are explored: the FGM (Farlie - Gumbel Morgenstern) copula and the Gumbel copula. Inferences for the proposed models are obtained under the Bayesian approach, using standard MCMC (Markov Chain Monte Carlo) methods. An illustration of the proposed methodology is given considering a medical data set.