Abstract: This paper introduces the beta linear failure rate geometric (BLFRG) distribution, which contains a number of distributions including the exponentiated linear failure rate geometric, linear failure rate geometric, linear failure rate, exponential geometric, Rayleigh geometric, Rayleigh and exponential distributions as special cases. The model further generalizes the linear failure rate distribution. A comprehensive investigation of the model properties including moments, conditional moments, deviations, Lorenz and Bonferroni curves and entropy are presented. Estimates of model parameters are given. Real data examples are presented to illustrate the usefulness and applicability of the distribution.
In this paper, we propose a new generalization of exponentiated modified Weibull distribution, called the McDonald exponentiated modified Weibull distribution. The new distribution has a large number of well-known lifetime special sub-models such as the McDonald exponentiated Weibull, beta exponentiated Weibull, exponentiated Weibull, exponentiated expo- nential, linear exponential distribution, generalized Rayleigh, among others. Some structural properties of the new distribution are studied. Moreover, we discuss the method of maximum likelihood for estimating the model parameters.