In this article, a new family of lifetime distributions by adding an additional parameter to the existing distributions is introduced. The new family is called, the extended alpha power transformed family of distributions. For the proposed family, explicit expressions for some mathematical properties along with estimation of parameters through Maximum likelihood Method are discussed. A special sub-model, called the extended alpha power transformed Weibull distribution is considered in detail. The proposed model is very flexible and can be used to model data with increasing, decreasing or bathtub shaped hazard rates. To access the behavior of the model parameters, a small simulation study has also been carried out. For the new family, some useful characterizations are also presented. Finally, the potentiality of the proposed method is showen via analyzing two real data sets taken from reliability engineering and bio-medical fields.
In this work, we study the odd Lindley Burr XII model initially introduced by Silva et al. [29]. This model has the advantage of being capable of modeling various shapes of aging and failure criteria. Some of its statistical structural properties including ordinary and incomplete moments, quantile and generating function and order statistics are derived. The odd Lindley Burr XII density can be expressed as a simple linear mixture of BurrXII densities. Useful characterizations are presented. The maximum likelihood method is used to estimate the model parameters. Simulation results to assess the performance of the maximum likelihood estimators are discussed. We prove empirically the importance and flexibility of the new model in modeling various types of data. Bayesian estimation is performed by obtaining the posterior marginal distributions as well as using the simulation method of Markov Chain Monte Carlo (MCMC) by the Metropolis-Hastings algorithm in each step of Gibbs algorithm. The trace plots and estimated conditional posterior distributions are also presented.