Abstract: In this paper, we introduce a Bayesian analysis for bivariate geometric distributions applied to lifetime data in the presence of covariates, censored data and cure fraction using Markov Chain Monte Carlo (MCMC) methods. We show that the use of a discrete bivariate geometric distribution could bring us some computational advantages when compared to standard existing bivariate exponential lifetime distributions introduced in the literature assuming continuous lifetime data as for example, the exponential Block and Basu bivariate distribution. Posterior summaries of interest are obtained using the popular OpenBUGS software. A numerical illustration is introduced considering a medical data set related to the analysis of a diabetic retinopathy data set.