Pub. online:14 Feb 2023Type:Data Science In ActionOpen Access
Journal:Journal of Data Science
Volume 21, Issue 2 (2023): Special Issue: Symposium Data Science and Statistics 2022, pp. 205–224
Abstract
Malignant mesotheliomas are aggressive cancers that occur in the thin layer of tissue that covers most commonly the linings of the chest or abdomen. Though the cancer itself is rare and deadly, early diagnosis will help with treatment and improve outcomes. Mesothelioma is usually diagnosed in the later stages. Symptoms are similar to other, more common conditions. As such, predicting and diagnosing mesothelioma early is essential to starting early treatment for a cancer that is often diagnosed too late. The goal of this comprehensive empirical comparison is to determine the best-performing model based on recall (sensitivity). We particularly wish to avoid false negatives, as it is costly to diagnose a patient as healthy when they actually have cancer. Model training will be conducted based on k-fold cross validation. Random forest is chosen as the optimal model. According to this model, age and duration of asbestos exposure are ranked as the most important features affecting diagnosis of mesothelioma.
Abstract: support vector machines (SVMs) constitute one of the most popular and powerful classification methods. However, SVMs can be limited in their performance on highly imbalanced datasets. A classifier which has been trained on an imbalanced dataset can produce a biased model towards the majority class and result in high misclassification rate for minority class. For many applications, especially for medical diagnosis, it is of high importance to accurately distinguish false negative from false positive results. The purpose of this study is to successfully evaluate the performance of a classifier, keeping the correct balance between sensitivity and specificity, in order to enable the success of trauma outcome prediction. We compare the standard (or classic) SVM (C SVM) with resampling methods and a cost sensitive method, called Two Cost SVM (TC SVM), which constitute widely accepted strategies for imbalanced datasets and the derived results were discussed in terms of the sensitivity analysis and receiver operating characteristic (ROC) curves.